Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tuberculosis research takes off

24.03.2015

Scientists call for a global strategy for the development of new tuberculosis vaccines

For 80 years there was essentially a lull in tuberculosis research. Indeed, the last scientific breakthrough in 1921, the Bacillus Calmette-Guérin (BCG) vaccine, still forms the central pillar of tuberculosis prevention.


The tuberculosis bacterium Mycobacterium tuberculosis.

© MPI for Infection Biology / Volker Brinkmann

In most cases, immunisation with BCG protects children from the worst forms of the disease, but not against the most common form, pulmonary tuberculosis in adults and children.

The vaccine has therefore not helped to reduce the number of tuberculosis cases. Only since the start of the new millennium has research once again been able to report significant advances in the development of new vaccines and drugs.

There are now a number of promising vaccine candidates. But setbacks still occur: In 2013 the most advanced candidate proved disappointing in a clinical trial with children and in 2015 in a clinical trial with HIV-positive adults. Although several other candidates have passed preliminary clinical tests, BCG will remain the only available vaccine for some years to come.

At the same time, more and more cases of tuberculosis are occurring that are resistant to all drugs currently available. It therefore appears unlikely that the targets set by the World Health Organization (WHO) will be met, namely to reduce the global incidence of tuberculosis by 90 percent and the mortality rate by 95 percent by 2035. “The relentless rise in the number of tuberculosis cases appears to have been halted for the time being, and the incidence of tuberculosis is on a slow decline for the first time in decades. Nevertheless, we need to do a lot more to effectively contain the disease,” says Stefan Kaufmann, Director at the Max Planck Institute for Infection Biology in Berlin and member of several international research networks.

A major obstacle is the enormous cost of tuberculosis research. Even a phase 2 trial, which aims to evaluate efficacy and safety in a relatively few number of patients, costs about 20 million US dollars to run. A large-scale phase 3 trial costs a whopping 100 million dollars. Above and beyond that, ongoing tuberculosis research requires more than 100 million dollars per year. Yet the research and development costs for tuberculosis vaccines pale in significance compared to the financial burden imposed by the disease. According to a study, tuberculosis-related work incapacity and treatment costs the EU five billion euros every year. “We can only meet this financial challenge if public research organizations, industry, governments and non-governmental organizations join forces. At the same time, we need to do everything possible to make research more efficient,” says Kaufmann.

Together with Thomas G. Evans of Aeras and Willem A. Hanekom of the Bill & Melinda Gates Foundation, Kaufman proposes a number of measures for organising tuberculosis research more effectively in future. For example, it must be ensured that only the most promising vaccine candidates progress into subsequent trials. To this end, research institutes around the world must work closely together to coordinate their trials. For instance, they should define standardised targets for trials, compare vaccine candidates directly with each other in trials and establish exact criteria for measuring the protective effect of a vaccine. “In this way substantial costs could be saved. It would also be helpful to harmonise trials on tuberculosis vaccines with trials on tuberculosis drugs and HIV vaccines,” Kaufmann advises.

Considerable costs could also be saved if a way could be found to reduce the number of participants required for trials. One solution might be to conduct trials with subjects from high-risk groups. Individuals from such groups have a higher-than-average likelihood of becoming infected. Thus, the number of patients needed for informative trials could be recruited more quickly.

In addition, molecular tests such as the interferon gamma assay and the tuberculin skin test, which reliably demonstrate tuberculosis infection, could reduce the scope of trials and save money. Trials that measure the efficacy of vaccine candidates on the basis of such tests need fewer subjects. So-called biomarkers could also help identify those individuals in whom a vaccine is effective.

Moreover, the analysis of interim results of ongoing trials can improve their cost-efficiency. In this way, the trials can be quickly adjusted to take into account any new findings obtained, and the number of participants can be increased or reduced accordingly. “Other researchers should also have access to the data and samples from such trials so that future trials can also benefit from them,” says Kaufmann.


Contact


Prof. Dr. Dr. h. c. Stefan H.E. Kaufmann
Max Planck Institute for Infection Biology, Berlin
Phone: +49 30 28460-500

Fax: +49 30 28460-501

Email: kaufmann@mpiib-berlin.mpg.de


Original publication
Stefan H.E. Kaufmann, Thomas G. Evans, Willem A. Hanekom

Tuberculosis vaccines: Time for a global strategy

Science Translational Medicine, 25. Februar 2015

Source

Prof. Dr. Dr. h. c. Stefan H.E. Kaufmann | Max Planck Institute for Infection Biology, Berlin
Further information:
http://www.mpg.de/9066221/tuberculosis-research

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>