Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team's fabricated corneal tissue allows closer look at how eyes heal

09.01.2020

NIH grant helps researchers develop new ways to study eye's repair mechanisms

Cells called corneal keratocytes are innately programmed to come to the rescue if the eye is injured. This natural healing process sometimes fails, however, resulting in scarring and blindness. Scientists are still trying to understand why.


Dr. David Schmidtke, University of Texas at Dallas professor of bioengineering, displays a microfluidic device in his lab at UT Southwestern Medical Center. Schmidtke uses microfluidic devices to fabricate tiny strands of collagen called fibrils.

Credit: The University of Texas at Dallas

New research by University of Texas at Dallas bioengineer Dr. David Schmidtke aims to help solve that mystery. Schmidtke and his team have demonstrated a technique in the lab for fabricating tiny strands of collagen called fibrils to facilitate further research on the eye's repair process. The method was detailed in a new study published in the December issue of the journal Biomedical Microdevices.

The study was funded in part by a $1.8 million, five-year National Institutes of Health grant that Schmidtke received last summer to develop new ways to study the eye's healing mechanisms -- knowledge that may lead to new therapies and treatments.

"How keratocytes repair tissue and why, in some cases, they leave scar tissue, is not well understood," said Schmidtke, professor of bioengineering in the Erik Jonsson School of Engineering and Computer Science. "We came up with a way to mimic an injury model, so we can look at how the cells respond when there is a wound."

Dr. Matthew Petroll, professor of ophthalmology and chair of the biomedical engineering graduate program at UT Southwestern Medical Center, initially approached Schmidtke for help in finding a new way to study how the patterning and topography of fibrils can influence corneal cell behavior. These threadlike structures are arranged in a crisscross pattern in the eye and serve as a path to guide keratocytes to an injury.

The UT Dallas research draws on Schmidtke's expertise in microfluidic devices, which are palm-sized pieces of transparent plastic that contain small channels about the size of a strand of human hair. He is using these devices to fabricate the fibrils. Schmidtke's research team, which includes undergraduate and graduate students, injects collagen into the channels. The collagen polymerizes as it flows through the channels, resulting in aligned fibrils that are similar in structure to the collagen fibrils that are present in corneal tissue.

Schmidtke is working with Dr. Victor Varner, assistant professor of bioengineering at UT Dallas, who is focusing on how keratocytes sense the level of stiffness or softness in the fibrils with which they interact. The researchers plan to study how fibrils' density, elasticity and dimensionality affect keratocytes. For example, keratocytes behave differently on aligned collagen fibrils compared to randomly oriented collagen fibrils, Schmidtke said.

The research could help develop therapies to reduce corneal scarring and guide efforts to engineer tissue replacements. The models also could be used in other fields where researchers need to study cell patterning and behavior. Schmidtke conducts his research at UT Dallas and in lab space at UT Southwestern.

"The collaboration with UT Southwestern, and having research lab space there, has been a big benefit to applying engineering tools to biomedical questions," he said.

###

Other authors of the study include Petroll and Varner, UT Dallas biomedical engineering doctoral student Kevin H. Lam, and UT Southwestern doctoral students Pouriska B. Kivanany and Kyle Grose, and postdoctoral research associates Dr. Nihan Yonet-Tanyeri and Dr. Nesreen Alsmadi.

In addition to NIH funding, the research was supported by grants from the Office of the Vice President for Research at UT Dallas, the UT Southwestern Hamon Center for Regenerative Science and Medicine, the UT Southwestern George M. O'Brien Kidney Research Core Center and the nonprofit organization Research to Prevent Blindness.

Media Contact

Media Relations
newscenter@utdallas.edu
972-883-2155

 @ut_dallas

http://www.utdallas.edu 

Media Relations UT Dallas | EurekAlert!
Further information:
https://www.utdallas.edu/news/research/eye-repair-tissue-2020/?WT.mc_id=NewsHomePage
http://dx.doi.org/10.1007/s10544-019-0436-3

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>