Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study tracks inner workings of the brain with new biosensor

16.08.2018

An international team of scientists have taken an important step towards gaining a better understanding of the brain’s inner workings, including the molecular processes that could play a role in neurological disorders such as epilepsy.

The research team has, for the first time, optically tracked the movements of the neurotransmitter glycine, which is a signalling molecule in the brain, with a new biosensor.


Biosensor for neurotransmitter glycine: Professor Christian Henneberger (r) and his college from Bonn, Dr. Daniel Minge (l) use a microscope to observe brain tissue at work

© Rolf Müller / UK Bonn

Associate Professor Colin Jackson from The Australian National University (ANU) said the new study would help scientists gain more insight into many neurological diseases that occur due to dysfunctional neurotransmitter activity.

“To understand how the brain works at the molecular level and how things can go wrong, we need to understand the release and uptake of neurotransmitters,” said Associate Professor Jackson from the ANU Research School of Chemistry.

“Neurotransmitters are too small to see directly, so we made a new biosensor for them.”

The research team designed and made a protein to bind glycine and fused it with two other proteins that are fluorescent.

Glycine is a neurotransmitter in the central nervous system, including in the cortex, spinal cord, brainstem and retina, that plays a role in neuronal communication and learning, and also in processing motor and sensory information that permits movement, vision and hearing.

“When the binding protein binds to glycine, the fluorescent proteins change their relative positions and we see a change in fluoresce that we can monitor with a special microscope,” Associate Professor Jackson said.

“There was previously no way to visualise the activity of glycine in brain tissue – we can do this now, which is exciting.

“In the future, we want to make sensors for other neurotransmitters and to use our sensor to look at the molecular basis of certain neurological diseases.”

The research was funded by the Human Frontiers in Science Fellowship Program, which funded Associate Professor Jackson’s team at ANU and researchers at the University of Bonn in Germany and the Institute of Science and Technology in Austria.

Professor Christian Henneberger’s team at the University of Bonn in Germany assisted in design of the sensor and developed the techniques to use the new biosensor in living brain tissue. This enabled them to see how glycine levels change in real time in response to neuronal activity and how glycine is distributed in living brain tissue.

“The sensor allowed us to directly test important hypotheses about glycine signalling. We also discovered that, unexpectedly, glycine levels change during neuronal activity that induces learning-related synaptic changes,” Professor Henneberger said.

“We are following up our study by further exploring the mechanisms that govern glycine’s influence on information processing in the healthy brain and also in disease models.”

The study will be published in the journal Nature Chemical Biology in September and is already available online:

Publication: William H. Zhang, Michel K. Herde, Joshua A. Mitchell, Jason H. Whitfield, Andreas B. Wulff, Vanessa Vongsouthi, Inmaculada Sanchez-Romero, Polina E. Gulakova, Daniel Minge, Björn Breithausen, Susanne Schoch, Harald Janovjak, Colin J. Jackson & Christian Henneberger: Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS; Nature Chemical Biology; DOI: 10.1038/s41589-018-0108-2

FOR INTERVIEWS:

Professor Christian Henneberger
Institute of Cellular Neuroscience
University of Bonn
Phone: +49(0)228/287-16304
E: christian.henneberger@uni-bonn.de

Professor Colin Jackson
Research School of Chemistry
ANU College of Science / Australia
Phone: +61 2 6125 8325
E: colin.jackson@anu.edu.au

Dr. Inka Väth | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Health and Medicine:

nachricht Testing corneal cell quality? Apply physics
23.07.2019 | Kyoto University

nachricht First impressions go a long way in the immune system
22.07.2019 | Weizmann Institute of Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Hidden dynamics detected in neuronal networks

23.07.2019 | Life Sciences

Towards a light driven molecular assembler

23.07.2019 | Life Sciences

A torque on conventional magnetic wisdom

23.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>