Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study tracks inner workings of the brain with new biosensor

16.08.2018

An international team of scientists have taken an important step towards gaining a better understanding of the brain’s inner workings, including the molecular processes that could play a role in neurological disorders such as epilepsy.

The research team has, for the first time, optically tracked the movements of the neurotransmitter glycine, which is a signalling molecule in the brain, with a new biosensor.


Biosensor for neurotransmitter glycine: Professor Christian Henneberger (r) and his college from Bonn, Dr. Daniel Minge (l) use a microscope to observe brain tissue at work

© Rolf Müller / UK Bonn

Associate Professor Colin Jackson from The Australian National University (ANU) said the new study would help scientists gain more insight into many neurological diseases that occur due to dysfunctional neurotransmitter activity.

“To understand how the brain works at the molecular level and how things can go wrong, we need to understand the release and uptake of neurotransmitters,” said Associate Professor Jackson from the ANU Research School of Chemistry.

“Neurotransmitters are too small to see directly, so we made a new biosensor for them.”

The research team designed and made a protein to bind glycine and fused it with two other proteins that are fluorescent.

Glycine is a neurotransmitter in the central nervous system, including in the cortex, spinal cord, brainstem and retina, that plays a role in neuronal communication and learning, and also in processing motor and sensory information that permits movement, vision and hearing.

“When the binding protein binds to glycine, the fluorescent proteins change their relative positions and we see a change in fluoresce that we can monitor with a special microscope,” Associate Professor Jackson said.

“There was previously no way to visualise the activity of glycine in brain tissue – we can do this now, which is exciting.

“In the future, we want to make sensors for other neurotransmitters and to use our sensor to look at the molecular basis of certain neurological diseases.”

The research was funded by the Human Frontiers in Science Fellowship Program, which funded Associate Professor Jackson’s team at ANU and researchers at the University of Bonn in Germany and the Institute of Science and Technology in Austria.

Professor Christian Henneberger’s team at the University of Bonn in Germany assisted in design of the sensor and developed the techniques to use the new biosensor in living brain tissue. This enabled them to see how glycine levels change in real time in response to neuronal activity and how glycine is distributed in living brain tissue.

“The sensor allowed us to directly test important hypotheses about glycine signalling. We also discovered that, unexpectedly, glycine levels change during neuronal activity that induces learning-related synaptic changes,” Professor Henneberger said.

“We are following up our study by further exploring the mechanisms that govern glycine’s influence on information processing in the healthy brain and also in disease models.”

The study will be published in the journal Nature Chemical Biology in September and is already available online:

Publication: William H. Zhang, Michel K. Herde, Joshua A. Mitchell, Jason H. Whitfield, Andreas B. Wulff, Vanessa Vongsouthi, Inmaculada Sanchez-Romero, Polina E. Gulakova, Daniel Minge, Björn Breithausen, Susanne Schoch, Harald Janovjak, Colin J. Jackson & Christian Henneberger: Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS; Nature Chemical Biology; DOI: 10.1038/s41589-018-0108-2

FOR INTERVIEWS:

Professor Christian Henneberger
Institute of Cellular Neuroscience
University of Bonn
Phone: +49(0)228/287-16304
E: christian.henneberger@uni-bonn.de

Professor Colin Jackson
Research School of Chemistry
ANU College of Science / Australia
Phone: +61 2 6125 8325
E: colin.jackson@anu.edu.au

Dr. Inka Väth | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Health and Medicine:

nachricht The FiTS app now offering cooking videos as it expands its concept for long-term behavior modification
18.09.2018 | vitaliberty GmbH

nachricht The microbiota in the intestines fuels tumour growth
18.09.2018 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

World's first passive anti-frosting surface fights ice with ice

18.09.2018 | Materials Sciences

A novel approach of improving battery performance

18.09.2018 | Materials Sciences

Scientists use artificial neural networks to predict new stable materials

18.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>