Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small peptide found to stop lung cancer tumor growth in mice

28.08.2009
In new animal research done by investigators at Wake Forest University School of Medicine, scientists have discovered a treatment effective in mice at blocking the growth and shrinking the size of lung cancer tumors, one of the leading causes of cancer death in the world.

The study, recently published in Molecular Cancer Therapeutics, a journal of the American Association for Cancer Research, is the first to show that treatment with a specific peptide, angiotensin-(1-7), reduces lung tumor growth by inhibiting blood vessel formation.

"If you're diagnosed with lung cancer today, you've got a 15 percent chance of surviving five years – and that's just devastating," said co-lead investigator Patricia E. Gallagher, Ph.D., director of the Molecular Biology Core Laboratory in the Hypertension and Vascular Research Center at the School of Medicine. "Those other 85 people – 85 percent – they're not going to see their kids graduate. They're not going to see their children get married."

The lung cancer survival rate has changed little in the past 30 years, said Gallagher's co-lead investigator, E. Ann Tallant, Ph.D., a professor in the Hypertension and Vascular Research Center – a fact that motivates them in their research.

Peptides, found in all animals, are compounds formed by linking one or more amino acids together through the sharing of electrons. They are among the building blocks of life. Peptides can perform a wide range of functions in the body, depending on which amino acids are involved. Some can regulate hormones, for example, while others can have an antibiotic function.

Angiotensin-(1-7) is a small peptide that binds to proteins on the surface of cells and prevents cell growth – but only if the cell is actively growing when the binding occurs. That property is what led Tallant and Gallagher to explore the peptide's uses for treating cancer by blocking tumor growth.

Angiotensin-(1-7) works by inhibiting the production of signals sent out by a cancer tumor for food. For tumors to grow, they need nutrients delivered by blood vessels. The signals they send prompt blood vessels to grow and invade the tumor to feed it.

Every day during the six-week study, researchers injected either saline or the angiotensin (1-7) peptide into mice growing human lung cancer tumors. Over the course of the study, the tumors treated with angiotensin-(1-7) shrunk, while the saline-treated tumors grew and, at the end of the study, the tumors treated with angiotensin-(1-7) weighed about 60 percent less than the tumors treated with saline. Analysis also showed that the tumors from mice treated with the peptide had significantly fewer blood vessels compared to the tumors from the saline-treated animals.

The researchers further tested angiotensin (1-7)'s affect on blood vessel formation, or angiogenesis, by treating chick embryos with the peptide – a procedure considered the gold standard for determining anti-angiogenic ability. They found that blood vessels continued to grow in a saline-injected control group, while blood vessel formation decreased by more than 50 percent in the embryos treated with angiotensin-(1-7).

Tallant and Gallagher said the treatment likely has applications beyond lung cancer – they have collected data showing it is effective on breast, colon and brain tumors, as well.

The treatment also presents an attractive possibility for future human cancer therapy from a cost perspective, they said.

"Because it's a peptide, it's very small and can be made very easily," Gallagher said. "We sometimes like to say we're the aspirin of cancer therapy."

Co-investigators on the study were graduate students David R. Soto-Pantoja and Jyotsana Menon of the School of Medicine. The study was funded by the Susan G. Komen Breast Cancer Research Foundation, Department of Defense, National Institutes of Health, Unifi, Farley-Hudson Foundation, and Golfers Against Cancer of the Triad.

The first clinical trial of angiotensin-(1-7) has been completed at the School of Medicine and the results are currently being reviewed.

Media Relations Contacts: Jessica Guenzel, jguenzel@wfubmc.edu, (336) 716-3487; Bonnie Davis, bdavis@wfubmc.edu, (336) 716-4977; or Shannon Koontz, shkoontz@wfubmc.edu, (336) 716-2415.

Wake Forest University Baptist Medical Center (www.wfubmc.edu) is an academic health system comprised of North Carolina Baptist Hospital, Brenner Children's Hospital, Wake Forest University Physicians, and Wake Forest University Health Sciences, which operates the university's School of Medicine and Piedmont Triad Research Park. The system comprises 1,056 acute care, rehabilitation and long-term care beds and has been ranked as one of "America's Best Hospitals" by U.S. News & World Report since 1993. Wake Forest Baptist is ranked 32nd in the nation by America's Top Doctors for the number of its doctors considered best by their peers. The institution ranks in the top third in funding by the National Institutes of Health and fourth in the Southeast in revenues from its licensed intellectual property.

Jessica Guenzel | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>