Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensing infection, suppressing regeneration

12.03.2020

Study identifies how a DNA sensor regulates blood vessel repair

In a new peer-reviewed publication, University of Illinois at Chicago researchers describe how the body's response to inflammation, which helps to fight many kinds of infections, also can counterproductively suppress much-needed cell repair and regeneration in blood vessels.


Mitochondrial network (green fluorescence) in a blood vessel endothelial cell

Credit: Jalees Rehman

In the study, which is published in Immunity, the researchers describe an enzyme that blocks the ability of blood vessel cells to self-heal. By studying mice with sepsis -- a condition caused when the body's inflammatory response to a bloodstream bacterial infection spirals out of control -- they found that removal of the enzyme allows cells to fully regenerate.

"When cells are faced with an injury or an infection, it seems that they make a 'fight' or 'fix' choice," said UIC's Asrar Malik, senior author of the study and the Schweppe Family Distinguished Professor and head of pharmacology at the College of Medicine. "Inflammation is the 'fight' response, and the cells appear to delay regeneration while amplifying the inflammatory response."

"We think that over time cells have evolved to favor fighting an infection over repairing damaged cells, but in some cases, this preference to fight puts the body at further risk," said Dr. Jalees Rehman, co-senior author and UIC professor of medicine, pharmacology and bioengineering at the College of Medicine.

"Especially when the immune response of the body to an infection is so excessive that it damages vital organs such as the lungs, it is absolutely vital that we learn how to help cells restore their ability to regenerate and resolve the inflammation."

Rehman said that the enzyme -- named cGAS -- acts as a DNA sensor that is being activated by the DNA released by damaged mitochondria of the blood vessel cells.

"We showed that when the sensor is removed, blood vessel endothelial cells shift their balance towards restoration and regeneration," Rehman said.

In an experimental model of bacterial sepsis, mice lacking this DNA sensor had much higher rates of survival and showed rapid regeneration of the blood vessels in the lung.

"It's possible that the degree to which this DNA injury sensor gets activated contributes to why some individuals survive a severe condition like sepsis," he said. "Suppression of regeneration is especially concerning in the elderly. Our study suggests that further study of this DNA sensor might provide provocative new areas for research to improve endogenous regeneration."

###

Co-authors on the paper are UIC's Long Shuang Huang, Zhigang Hong, Wei Wu, Shiquin Xiong, Ming Zhong and Xiaopei Gao.

The study was funded by grants from the National Institutes of Health (R01HL45638, P01HL60678, T32GL007829, R01HL118068 and R01HL90152).

Media Contact

Jackie Carey
jmcarey@uic.edu
312-996-8277

 @uicnews

http://www.uic.edu 

Jackie Carey | EurekAlert!
Further information:
https://today.uic.edu/sensing-infection-suppressing-regeneration
http://dx.doi.org/10.1016/j.immuni.2020.02.002

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Skoltech scientists get a sneak peek of a key process in battery 'life'

28.05.2020 | Power and Electrical Engineering

Elucidation of nanostructures in practical heterogeneous catalysts

28.05.2020 | Physics and Astronomy

Multifunctional e-glasses monitor health, protect eyes, control video game

28.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>