Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers show a genetic overlap in schizophrenia and cognitive ability

17.12.2013
Investigators at The Feinstein Institute for Medical Research have discovered for the first time, direct evidence of a genetic overlap between schizophrenia and general cognitive ability. The findings are published online in Molecular Psychiatry.

Schizophrenia is a chronic, severe and disabling brain disorder that affects approximately 2.2 million Americans each year. It is characterized by a significant reduction in general cognitive abilities, so that many patients struggle with completing school, holding jobs and achieving their full potential.

Previous studies have indicated subtle cognitive abnormalities in undiagnosed and unmedicated relatives of patients who live with schizophrenia, which suggests the possibility of genetic overlap between risk for schizophrenia and cognitive traits. These previous studies, however, did not test this overlap on the molecular level.

Anil Malhotra, MD, director of psychiatry research at Zucker Hillside Hospital and an investigator at the Feinstein Institute, and his colleague Todd Lencz, PhD, associate investigator at the Zucker Hillside Hospital and the Feinstein Institute, conducted the first molecular genetic test to determine if genetic markers of reduced cognitive ability were also genetic markers of increased schizophrenia risk. Specifically, they conducted a large-scale, meta-analysis, genome-wide association study (GWAS) of samples from 5,000 subjects provided by the Cognitive Genomics consorTium (COGENT). COGENT, which was founded and is led by Dr. Malhotra, is an international consortium of nine teams of researchers across seven countries.

Through their analysis, they confirmed that patients who suffered from schizophrenia also had lessened cognitive ability. This is the first direct evidence for genetic overlap between schizophrenia risk genes and genes that regulate general cognitive ability, such as memory, attention, and language abilities. The results provide molecular confirmation of this genetic overlap and additional insight into how schizophrenia develops and progresses.

"This research leads us to a deeper understanding of how schizophrenia affects the brain at the molecular level," said Dr. Lencz. "Our studies are designed to provide clues to the development of new treatments to improve the lives of our patients."

About The Feinstein Institute for Medical Research

Headquartered in Manhasset, NY, The Feinstein Institute for Medical Research is home to international scientific leaders in many areas including Parkinson's disease, Alzheimer's disease, psychiatric disorders, rheumatoid arthritis, lupus, sepsis, human genetics, pulmonary hypertension, leukemia, neuroimmunology, and medicinal chemistry. The Feinstein Institute, part of the North Shore-LIJ Health System, ranks in the top 6th percentile of all National Institutes of Health grants awarded to research centers.

Emily Ng | EurekAlert!
Further information:
http://www.FeinsteinInstitute.org
http://www.nshs.edu

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Can radar replace stethoscopes?

14.08.2018 | Medical Engineering

The end-Cretaceous extinction unleashed modern shark diversity

14.08.2018 | Life Sciences

Light-controlled molecules: Scientists develop new recycling strategy

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>