Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New strategies with greater antitumorous efficacy

04.10.2007
One of the biggest problems in the current treatment of cancer is that the agents that are efficacious in the destruction of tumorous cells are, at the same time, extremely toxic for the rest of the healthy cells and tissues of the patient. To address the problem the University of the Basque Country (UPV/EHU) is seeking more specific treatments and studying the differences between tumorous cells and healthy ones.

A research team from the Faculty of Medicine and Odontology is working on identifying pharmacological agents that increase the therapeutic benefit of combinations of chemo-, immune and radiotherapy agents in the treatment of cancer ailments.

The aim of the research team was to identify compounds that act on the metabolic pathways and processes that take place differently depending whether a diseased tissue of a patient or healthy tissue is involved; in this way selective action can be undertaken, increasing the sensitivity of treatments for diseased tissues without damaging healthy cells or tissues at the same time.

With this general goal the researchers tested various biomodulators on a number of different tumorous modules such as melanoma, sarcoma and cancer of the colon. On the one hand, they studied agents that modulated levels of glutathione (GSH) – key element in the biological processes of cells, both healthy and tumorous. Tumorous cells with high GSH levels have a greater growth and metastatic capacity and a lower sensitivity to antitumorous agents. On the other hand, one of the features of tumorous cells is that they lose their normal level of differentiation and, instead of exercising a determined function, they start to proliferate and generate a greater quantity of tumorous cells. This is why the researchers have also used agents that induce differentiation, such as are retinoids.

More selective therapies

Both groups of modulators have been associated with classic agents used in antitumorous therapies and have seen the benefits arising therefrom. They have shown that the GSH level modulating agent - oxothiazolidine-carboxylate (OTZ) increases the antitumorous effect in antitumorous cells and, at the same time, protects healthy tissue. In this way the therapeutic benefit can be increased. Nevertheless, when another GSH-level modulating agent is combined with antitumorous agents, for example, buthionine-sulphoxamide (BSO), the researchers observed that the effect of the standard drug was increased but that an increase in damage to healthy tissue also took place.

Also, with the aim of returning the cells to a more differentiated state, closer to healthy cell behaviour, this research team is investigating the use of retinoids in combination with standard agents. The response of tumorous cells to retinoids depends on the degree of differentiation of these cells. In general, highly differentiated tumorous cells are more sensitive to retinoids than moderately differentiated ones are. These latter, in response to retinoids, may trigger defence mechanisms that augment GSH levels and, in this way, increase metastatic capacity.

This is an interesting point, given that to date this different capacity that can have different cell lines within the same tumorous type has not been described. What the UPV-EHU researchers have done is to link both lines of modulation -GSH modulation and that of the differentiation inductors. They have found a link between the two – the induction of differentiation with retinoids also modulates the GSH levels of tumorous cells.

Researchers are analysing the model for the concentration and administering of the agents used, given that, in the biological modulation, both elements are found to be fundamental for the success of the treatment. The concentration is not a matter of the more the better, but the optimum response involves a specific concentration, because too little or too much may produce opposite or undesired effects.

Following in vitro and in vivo trials by researchers at the laboratories of the UPV/EHU, one of the goals of the research team is to transfer the information obtained to more easily managed systems for research and for clinical trials.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1459&hizk=I

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>