Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Side-effect of radiation treatment offers new hope for preventing transplant rejection

08.05.2007
A radiation treatment currently used to prepare patients for a bone marrow transplant causes changes in the immune system which encourage the body to accept donated bone marrow rather than reject it, according to new research.

The scientists, from Imperial College London, hope that their findings will help the development of new therapies to stop the immune system from rejecting these and other kinds of transplants. The research, which was funded by Cancer Research UK, is published today in the journal PNAS.

Bone marrow transplants are used to enable patients to produce healthy blood cells. However, the host immune system can sometimes attack the donor immune cells from the transplanted bone marrow. Radiation treatment is given before the transplant to create space in the host bone marrow for donor immune cells to inhabit and, in the case of patients with leukaemia, to kill the leukaemia cells.

The new research, which used mouse models, shows that during this process, many of the T cells which mediate the immune response are killed. However, regulatory T cells are able to survive and proliferate, suggesting that they have more resistance to irradiation. Regulatory T cells stop other T cells from attacking the transplanted cells, and so encourage the immune system to accept the transplant.

At present this effect is not sufficiently strong to prevent rejection of bone marrow transplants, but the scientists hope the findings will enable them to develop new ways of curbing rejection.

Professor Francesco Dazzi, from the Kennedy Institute of Rheumatology at Imperial College London, who led the study, said: “Perfect tissue matching is rarely possible and this means the body's immune system recognises transplanted bone marrow as foreign and attacks it. Our new research shows that the regulatory cells which proliferate are able to recognise the foreign tissue and yet stop other immune cells from attacking it. Having uncovered a fundamental process the body uses to control the response to foreign tissue, we can now develop strategies to exploit this effect and control rejection of bone marrow and potentially other organ transplants.”

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>