Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows leptin could combat type 2 diabetes

25.09.2006
Gene therapy technique reverses type 2 diabetes in mice

University of Florida researchers have discovered the appetite-controlling hormone leptin could also combat type 2 diabetes, a disease that has become a growing problem in the United States as more Americans pack on extra pounds.

Using a novel gene therapy technique, UF researchers were able to reverse type 2 diabetes in mice. The researchers found that in diabetic mice, leptin acts in the hypothalamus to keep the body from producing too much insulin even after constant exposure to a high-fat diet, which over time can lead to or worsen type 2 diabetes, according to findings published this month in the online edition of the journal Peptides.

Although more tests are needed, scientists are hopeful these findings will lead to better treatments for patients with type 2 diabetes, said Satya Kalra, Ph.D., a UF professor of neuroscience and the senior author of the article.

"We found that we were successful in keeping the blood levels of insulin low at the same time keeping blood glucose levels at a normal range," Kalra said. "In other words, we were able to correct diabetes in these animals under various challenges."

The researchers injected a gene embedded in a harmless virus into the brains of the mice to increase leptin production in the hypothalamus, which regulates the hormone. While past studies have shown leptin acts in the brain to regulate weight and appetite, this is the first time researchers have shown that leptin can independently affect insulin secretion as well, Kalra said.

Typically, eating rich and fatty foods causes blood sugar levels to rise, which in turn causes the body to produce more insulin, a protein that helps the body use carbohydrates. Patients with type 2 diabetes often become resistant to the insulin they do make, causing too much of it to build up in the body. After gene therapy, tests showed that the blood sugar and insulin levels in the mice that received it had returned to normal, even when they were fed a high-fat diet. Mice that ate a high-fat diet but that did not receive gene therapy, however, continued to overproduce insulin and have high blood sugar levels, which Kalra said are markers for type 2 diabetes. In another arm of the study, researchers also discovered that normal, nondiabetic rats that received leptin gene therapy produced lower levels of insulin as well.

"This was totally unexpected," Kalra said. "Until now there was no evidence that leptin action in the hypothalamus had control on insulin secretion. (With leptin gene therapy) we can reimpose that control."

More than 18 million people in the United States have diabetes and about 90 percent of them have type 2 diabetes, also called adult-onset diabetes, according to the Centers for Disease Control and Prevention. Most cases of type 2 diabetes result from leading a sedentary lifestyle, being overweight and overeating.

If left untreated, type 2 diabetes can also cause cardiovascular disease, kidney disease and blindness.

Aside from keeping blood sugar and insulin levels down, the rodents that received gene therapy also lived longer than obese rodents that did not, Kalra said.

"Currently we do not know if that is due to the correction of the diabetes or many of the diseases associated with diabetes," Kalra said. "It is clinically known that diabetic patients have early onset mortality. If the diabetes is managed, there is an improvement in lifespan."

Martin G. Myers, M.D., Ph.D., an associate professor of medicine and physiology at the University of Michigan Medical School who also studies leptin, said other studies in recent years have shown similar findings, albeit without the use of gene therapy.

"Most of what is in this paper is not surprising," Myers said.

While he noted that it was good to see the leptin was still working in the rodents for the full 15 weeks that UF researchers were conducting the study, Myers said it is unlikely that doctors will employ leptin gene therapy in humans.

Gene therapy would be an ideal treatment because it just takes one shot, Kalra said, adding it is also likely drugs could be developed to simulate leptin's action in a pill form, which is easier to give to patients.

"What we have shown in animals is very effective," Kalra said. "It can be done."

April Frawley Birdwell | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Can radar replace stethoscopes?

14.08.2018 | Medical Engineering

The end-Cretaceous extinction unleashed modern shark diversity

14.08.2018 | Life Sciences

Light-controlled molecules: Scientists develop new recycling strategy

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>