Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yttrium-90 to control hepatocarcinoma

11.07.2006
The University Hospital at the University of Navarra is the only centre throughout the entire Spanish state for the treatment of liver tumours by means of radioembolisation and the one with the greatest accumulated experiences in the treatment throughout Europe. The technique consists of injecting spheres marked with Yttrium-90 – of very few microns in size – into the hepatic artery, from where they preferentially make for the tumorous zone. Here they remain lodged and emit radiation, which damages the tumour cells.

The treatment is complex and requires the close collaboration of the Departments of Nuclear Medicine, Conventional and Interventionist Radiology, Hepatology and Oncology.

In the primary tumours of the liver, also called hepatocarcinomas, the results show that the treatment is very efficacious in preventing treated lesions from growing: it achieves control - not eradication – of the disease in over 90% of the cases, at times over quite prolonged periods. Nevertheless, it does not avoid the appearance of new lesions in the liver and other organs.

Advantages and suitability

The treatment of hepatic tumours through radioembolisation has the advantage that it is not an exclusive procedure given that it can be administered in combination with quimiotherapy in those tumours that are responsive to this treatment. Moreover, its tolerance is quite high, it does not require long hospital stays, (normally patients stay just one day), and has a low risk of complications.

The technique incorporated at the University Hospital is particularly suitable for treating primary tumours of the liver (hepatocarcinomas) as well as secondary ones, above all, metastasis of cancer of the colon and endocrine tumours. Radioembolisation is an efficient alternative in those cases where the liver is host to several tumours and cannot be extirpated. The technique does not substitute surgery, rather provides the possibility of treatment in situations where there have been no therapeutic options to date.

However, when there is a risk that the spheres access the digestive tract, there are side-effects to the treatment. Moreover, neither is it recommended for patients who, in prior assessments, have been observed to capture very few spheres and, thus, in these cases, it is predicted that the treatment is not going to be efficacious.

Procedure

This therapeutic procedure is characterised by radiating the tumours directly and respecting the healthy liver. The microspheres are injected through a catheter in the hepatic artery, the only blood vessel that irrigates the tumorous zones of the liver, thus guaranteeing that the radiation preferentially targets the tumorous zone. The microspheres are marked with Yttrium-90 and transmit radiation when they arrive at the tumorous zone. Their effects can be evaluated after two months.

Once the suitability of the microspheres is established, specialists in Nuclear Medicine are responsible for deciding the suitability of the treatment and of calculating the dose appropriate for each patient. The principal aim of these treatments is to ensure that the radioactive spheres exclusively target the zone affected. However, there are situations where, given circulation problems or those involving connections between blood vessels, the spheres may travel to the lungs or other organs, such as the stomach or the intestinal tract and, thereby, cause considerable damage through side effects.

This is why, one week prior to treatment, and in cooperation with the Radiodiagnostic Service, a treatment simulation is carried out. In the first place, a hepatic arteriograph is carried out in order to view the arterial anatomy of the liver and, thereby, the vessels feeding the tumour. The hepatic artery has many anatomical variants and so there are branches thereof that feed other zones such as the duodenum and the bile duct. This is why hepatic vascularisation has to be restricted with the treatment preferentially targeting the liver.

During the planning stage, instead of introducing Yttrium-90 spheres, macroaggregates of albumin marked with Tecnecium were used. “This involves a radiotracer by which a gammagraph can be carried out in order to quantify the distribution by the organism of the radiotracer so that possible leaks of the spheres during treatment can be monitored. It should be taken into account that such a leak of Yttrium-90-marked microspheres can be damaging to the organs. Thanks to prior gammagrapy, the safety of the treatment is guaranteed and the dosage suitable for each patient calculated.

Once the suitability for treatment is established, the Yttrium administration kit is prepared – individualised for each patient, and the Yttrium administered by specialists from the Radiodiagnostic Service. This process requires the supervision of radiophysicians whose work is that of radiological protection and in the calculation of the dosage. “Before administering radiometabolic treatment, an estimate of the dosage the patient is to receive should be calculated, given that the amount of Yttrium-90 the organ will absorb has to be individualised for each patient. [In the calculations, the body surface of-the patient has to be taken into account. With all these figures, we can determine the optimum dosage to irradíate the tumour to the maximum and the healthy liver to the minimum.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=1000

More articles from Health and Medicine:

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

nachricht Pain: Perception and motor impulses arise in the brain independently of one another
12.12.2018 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Success at leading conference on silicon materials science and technology in Japan

13.12.2018 | Awards Funding

NSF-supported scientists present new research results on Earth's critical zone

13.12.2018 | Earth Sciences

Barely scratching the surface: A new way to make robust membranes

13.12.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>