Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel device shows potential in better detecting oral cancer

11.04.2006


Researchers supported by the National Institute of Dental and Craniofacial Research, part of the National Institutes of Health, report today their initial success using a customized optical device that allows dentists to visualize in a completely new way whether a patient might have a developing oral cancer.



Called a Visually Enhanced Lesion Scope (VELScope), this simple, hand-held device emits a cone of blue light into the mouth that excites various molecules within our cells, causing them to absorb the light energy and re-emit it as visible fluorescence. Remove the light, and the fluorescence of the tissue is no longer visible.

Because changes in the natural fluorescence of healthy tissue generally reflect light-scattering biochemical or structural changes indicative of developing tumor cells, the VELScope allows dentists to shine a light onto a suspicious sore in the mouth, look through an attached eyepiece, and watch directly for changes in color. Normal oral tissue emits a pale green fluorescence, while potentially early tumor, or dysplastic, cells appear dark green to black.


Testing the device in 44 people, the results of which are published online in the Journal of Biomedical Optics, the scientists found they could distinguish correctly in all but one instance between normal and abnormal tissue. Their diagnoses were confirmed to be correct by biopsy and standard pathology.

"The natural fluorescence of the mouth is invisible to the naked eye," said Dr. Miriam Rosin, a senior author on the paper and a cancer biologist at the British Columbia Cancer Research Center in Vancouver, Canada. "The VELScope literally brings this natural fluorescence to light, helping dentists to answer in a more informed way a common question in daily practices: To biopsy or not to biopsy."

Because developing tumors in the mouth are often easily visible, public health officials have long advocated early detection of oral cancer. But determining whether a suspicious sore is benign or potentially cancerous has remained scientifically problematic. "A major reason is looks alone can be deceiving," said Rosin, referring to the common practice of diagnosing cancer based on the general appearance and staining patterns of tissue biopsy. "What’s been badly needed in screening for oral cancer is a way to visualize the biological information within and let it tell you whether or not a lesion is likely to become cancerous."

Rosin said the VELScope goes a long way toward answering this unmet need. "Historically, the problem in developing a fluorescence-reading instrument has been largely organizational," said Rosin, a leader of the British Columbia Oral Cancer Prevention Program. "No one scientific discipline possesses sufficient expertise to build such a sophisticated imaging device, and the needed interdisciplinary groups weren’t forming to tackle the problem."

This lack of communication changed a few years ago when Rosin broached the subject to Dr. Calum MacAulay, the head of the British Columbia Cancer Research Center’s cancer imaging program and who has extensive training in physics, pathology, and engineering imaging devices. Based on these discussions, MacAulay and post-doctoral fellow Pierre Lane agreed to begin the technologically challenging process of designing a hand-held device that also would be user friendly in the dentist’s office.

Starting with a crude, light-emitting box and a pair of goggles that their group had previously cobbled together to visualize skin cancer, Lane and MacAulay gradually progressed to the one-step device reported today. "We essentially refined and integrated the box-and-goggles concept into one device," said MacAulay, who also works closely with a corporate partner that would like to commercialize the VELScope. "The box was molded into the lightweight, hand-held structure, a flexible cord attaches the examination light, and the goggles became the view finder that allows dentists to directly evaluate lesions in real time."

In their study, the scientists evaluated 50 tissue sites from 44 people. All sites were biopsied, and pathologists classified seven as normal, 11 had severe dysplasia, and 33 biopsies were oral squamous cell carcinoma. Reading the fluorescence patterns of the 50 sites, the group correctly identified all of the normal biopsies, 10 of the severe dysplasias, and all of the cancers. These numbers translated to 100 percent specificity and 98 percent sensitivity. Specificity refers to how well a test correctly identifies people who have a disease, while sensitivity characterizes the ability of a test to correctly identify those who are well.

Rosin said her group is now engaged in a larger follow-up study in Vancouver that will further evaluate the VELScope. "Laboratories are developing similar devices to detect lung and cervical cancer," said Rosin. "That means that the same basic technology is now being used to evaluate three tumor sites, and we can begin hopefully to pool our data and fine tune the characteristics and meaning of the changes in fluorescence."

The American Cancer Society (ACS) estimated last year that about 20,000 Americans were diagnosed with various oral cancers. The ACS also estimated that just over 5,000 Americans died from these cancers in 2005.

Bob Kuska | EurekAlert!
Further information:
http://www.nidcr.nih.gov

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>