Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A better tool to study role of iron in Alzheimer’s, Parkinson’s

24.02.2006


Engineers have found a way to pinpoint and identify the tiny iron oxide particles associated with Alzheimer’s and other neurodegenerative diseases in the brain.



The technique is likely to accelerate research on the cause of the diseases and could lead to the first diagnostic procedure for Alzheimer’s in patients while they are alive.

“We’re the first to be able to tell you both the location of the particles and what kind of particles they are,” said Mark Davidson, a University of Florida engineer in UF’s materials science and engineering department.


Davidson and collaborators at UF and Keele University in England have published at least four articles on their research in scholarly journals. Their latest article has been accepted for publication in the Journal of Alzheimer’s Disease.

Alzheimer’s, Huntington’s and Parkinson’s diseases affect millions of Americans and cost billions of dollars annually for patient treatment and care. Alzheimer’s is the most common of the three, afflicting 4.5 million Americans, with numbers projected to grow as the baby boomers age, according to the Alzheimer’s Association. The diseases share some potential symptoms, including physical impairments and dementia.

Although Huntington’s is caused by a genetic disorder, little is understood about precisely how Huntington’s, Alzheimer’s and Parkinson’s wreak havoc in the brain. However, medical researchers have long known that afflicted regions tend to contain unusually high concentrations of iron oxide and other iron-containing particles.

This observation is complicated by the fact that healthy brains also contain iron – indeed, iron is essential for normal brain function.

Traditional methods for studying the properties of “bad iron” tied to neurodegenerative diseases involve staining tissue sections to reveal the location of the iron, or extracting the particles. But these approaches reveal neither the specific iron compounds present nor the relationship of those compounds to specific structures within the tissue.

Electron microscopes don’t work either because their tight resolution makes it impossible to search enough area to find the iron.

“It would take you a career to look at one piece of tissue,” Davidson said.

To solve the problem, Davidson and Chris Batich, a professor of materials science and engineering, along with Albina Mikhaylova, Jon Dobson and Joanna Collingwood of Keele University, turned to an unlikely facility: the synchrotron at the U.S. Department of Energy’s Argonne National Laboratory near Chicago.

The synchrotron is an electron accelerator that produces the most powerful X-rays in the nation. Also known as the Advanced Photon Source, it is usually used for basic science experiments in high-energy physics. But the UF researchers crafted a system of mirrors and lenses that taps one of the cyclotron’s 35 “beam lines,” or X-ray sources, for the new purpose of analyzing brain tissue.

The results are impressive. Whereas an electron microscope can examine tissue one micron, or one thousandth of a centimeter, the new device can look at tissue two or three hundred microns in size. If it locates a particle, it then uses traditional spectroscopic methods to zoom in and determine what sort of iron the particle happens to be.

“It’s the equivalent of being up in an airplane, looking at the city of Tampa, and telling you whether there is a penny there or not,” Davidson said. “And then once we zoom in, we can tell you what kind of penny it is.”

So little is understood about the role of iron in neurodegenerative diseases today that it’s not even clear whether the iron is a symptom or a cause, Batich said. The UF technique may help by giving researchers a clearer view of the problem.

“The basic idea is, if you understand the mechanism, you can understand ways to try to treat the disease,” he said.

But the UF technique could also have clinical value. Davidson said that the group is planning to do experiments that could one day lead to using magnetic resonance imaging, or MRI, to highlight damaging iron in patients’ brains.

“If we can adjust the MRI to look for specific iron compounds related to Alzheimer’s we may be able to provide a technique for early diagnosis before clinical symptoms appear. The major advantage of this is that most treatments currently in development rely on early detection to slow or halt progression of the disease, as they cannot reverse it,” he said.

Mark Davidson | EurekAlert!
Further information:
http://www.microfab.ufl.edu

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Computer model predicts how fracturing metallic glass releases energy at the atomic level

20.07.2018 | Physics and Astronomy

Relax, just break it

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>