Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A better tool to study role of iron in Alzheimer’s, Parkinson’s

24.02.2006


Engineers have found a way to pinpoint and identify the tiny iron oxide particles associated with Alzheimer’s and other neurodegenerative diseases in the brain.



The technique is likely to accelerate research on the cause of the diseases and could lead to the first diagnostic procedure for Alzheimer’s in patients while they are alive.

“We’re the first to be able to tell you both the location of the particles and what kind of particles they are,” said Mark Davidson, a University of Florida engineer in UF’s materials science and engineering department.


Davidson and collaborators at UF and Keele University in England have published at least four articles on their research in scholarly journals. Their latest article has been accepted for publication in the Journal of Alzheimer’s Disease.

Alzheimer’s, Huntington’s and Parkinson’s diseases affect millions of Americans and cost billions of dollars annually for patient treatment and care. Alzheimer’s is the most common of the three, afflicting 4.5 million Americans, with numbers projected to grow as the baby boomers age, according to the Alzheimer’s Association. The diseases share some potential symptoms, including physical impairments and dementia.

Although Huntington’s is caused by a genetic disorder, little is understood about precisely how Huntington’s, Alzheimer’s and Parkinson’s wreak havoc in the brain. However, medical researchers have long known that afflicted regions tend to contain unusually high concentrations of iron oxide and other iron-containing particles.

This observation is complicated by the fact that healthy brains also contain iron – indeed, iron is essential for normal brain function.

Traditional methods for studying the properties of “bad iron” tied to neurodegenerative diseases involve staining tissue sections to reveal the location of the iron, or extracting the particles. But these approaches reveal neither the specific iron compounds present nor the relationship of those compounds to specific structures within the tissue.

Electron microscopes don’t work either because their tight resolution makes it impossible to search enough area to find the iron.

“It would take you a career to look at one piece of tissue,” Davidson said.

To solve the problem, Davidson and Chris Batich, a professor of materials science and engineering, along with Albina Mikhaylova, Jon Dobson and Joanna Collingwood of Keele University, turned to an unlikely facility: the synchrotron at the U.S. Department of Energy’s Argonne National Laboratory near Chicago.

The synchrotron is an electron accelerator that produces the most powerful X-rays in the nation. Also known as the Advanced Photon Source, it is usually used for basic science experiments in high-energy physics. But the UF researchers crafted a system of mirrors and lenses that taps one of the cyclotron’s 35 “beam lines,” or X-ray sources, for the new purpose of analyzing brain tissue.

The results are impressive. Whereas an electron microscope can examine tissue one micron, or one thousandth of a centimeter, the new device can look at tissue two or three hundred microns in size. If it locates a particle, it then uses traditional spectroscopic methods to zoom in and determine what sort of iron the particle happens to be.

“It’s the equivalent of being up in an airplane, looking at the city of Tampa, and telling you whether there is a penny there or not,” Davidson said. “And then once we zoom in, we can tell you what kind of penny it is.”

So little is understood about the role of iron in neurodegenerative diseases today that it’s not even clear whether the iron is a symptom or a cause, Batich said. The UF technique may help by giving researchers a clearer view of the problem.

“The basic idea is, if you understand the mechanism, you can understand ways to try to treat the disease,” he said.

But the UF technique could also have clinical value. Davidson said that the group is planning to do experiments that could one day lead to using magnetic resonance imaging, or MRI, to highlight damaging iron in patients’ brains.

“If we can adjust the MRI to look for specific iron compounds related to Alzheimer’s we may be able to provide a technique for early diagnosis before clinical symptoms appear. The major advantage of this is that most treatments currently in development rely on early detection to slow or halt progression of the disease, as they cannot reverse it,” he said.

Mark Davidson | EurekAlert!
Further information:
http://www.microfab.ufl.edu

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>