Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Team Invents Small-Diameter Artificial Arteries

04.03.2005


A patient needs a small-diameter bypass graft to replace a diseased blood vessel because of the progression of diabetes or the result of smoking.



Due to these chronic health issues, the patient’s veins can no longer be used for such a procedure. While large artificial arteries (10 to 15 millimeters in diameter) have been in use for about 50 years for replacing large blood vessels, development of a small-diameter artificial artery (less than 5 millimeters) has been unsuccessful due to rapid failure when implanted.

Martin Bide, a textile chemist at the University of Rhode Island, Matthew Phaneuf, president of BioSurfaces, Ashland, Mass., and Philip J. Brown of the School of Materials Science and Engineering at Clemson University, have developed a new way to synthesize such grafts from material made of polyester and collagen. A Phase I Small Business Innovative Research Grant (SBIR) from the National Heart, Lung and Blood Institute from the National Institutes of Health funded the research.


The trio said in its research summary that more than 500,000 peripheral bypass and coronary artery bypass grafts are implanted in the United States annually, so the potential annual market for a synthetic bypass graft could exceed $1.5 billion. Up until the team’s work, very little had changed with the technology related to artificial arteries since the mid-1950s, according to Phaneuf.

The polyester and collagen are electrospun into a mesh of ultra-fine fibers. Electrospinning uses electrostatic forces to distort a droplet of polymer solution into a fine filament to be deposited onto a surface. The process allows production of novel synthetic fibers of unusually small diameter and good mechanical properties. Other potential applications include wound dressing materials, artificial organs, and protective clothing. The researchers say the collagen allows the attachment of bioactive proteins that will promote healing and reduce clot formation.

Currently, no clinically available small (5 millimeter in diameter and smaller) vascular grafts can emulate the biological and physical properties of normal arteries. Implanted grafts of currently available materials fail because of clotting and stiffness as related to normal blood vessels. “A small vessel prosthesis (artery graft) that better emulates normal arterial walls would greatly improve the treatment of both peripheral vascular disease and coronary artery disease,” the researchers state in a summary of their research. “This is one of the applications it suits perfectly since conventional fiber extrusion technology is incapable of making such a material i.e., one that can combine proteins and synthetic materials together to form a composite small- scale device with all the right kind of properties,” Brown said.

The technology developed by Phaneuf, Brown and Bide is called “a nanofibrous biocomposite prosthetic vascular graft.” “The first choice for such a procedure is a patient’s own veins,” Bide said, “but when those veins have been damaged as a result of chronic illness, such as diabetes or those conditions related to smoking, then surgeons need an alternative.” “We employ the electrospinning process to create nanofibers with very large surface area for their weight,” Phaneuf said.

Bide said the collagen will be eliminated as the body’s own cells take up spaces in the artery or graft, thus reducing the potential for rejection. “We know through our early research that we can link proteins to the grafts and add anti-clotting treatments, as well as growth factors and other bioactive agents,” Bide said.

The next step for the three researchers, after successful completion of the Phase II SBIR studies, is to find a private company interested in licensing the product to allow for further research and eventual production for the market. “As a scientist, you always want to see an invention fully developed so that it can be used to help people,” Phaneuf said.

| newswise
Further information:
http://www.uri.edu

More articles from Health and Medicine:

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>