Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Georgia Tech micro-CT imaging technique to help tissue engineers improve bone regeneration

22.02.2005


Technique reveals new method for better bone grafts



Tissue engineers can choose from a wide range of living cells, biomaterials and proteins to repair a bone defect. But finding the optimum combination requires improved methods for tracking the healing process.

New Georgia Tech research points to better ways to heal and regenerate bones using microcomputed tomography (micro-CT) imaging — a process 1 million times more detailed than a traditional CT scan. The new micro-CT scan technique simultaneously looks at both vascularization (the process by which blood vessels invade body tissues during repair) and mineralization (the process by which mineral crystals form to harden regenerating bone) by collecting three-dimensional images in vitro and in vivo.


Georgia Tech researchers used the new technique to help develop bone graft substitutes that combine the availability and structural integrity of bone allografts, or bone grafts taken from a human donor, with the better healing properties of bone autografts, or bone grafts taken from the patient.

Unlike a traditional x-ray that only shows the presence of bone in two dimensions, the new micro-CT technique provides high-resolution 3-D images of vascularization and mineralization during bone repair. This approach allows tissue engineers to optimize the design of implants.

The findings of the project, headed by Dr. Robert Guldberg, a research director at the Georgia Tech/Emory Center for the Engineering of Living Tissues and an associate professor in Georgia Tech’s School of Mechanical Engineering, will be presented Feb. 20 at the annual meeting of the American Association for the Advancement of Science (AAAS).

"We’re applying 3-D imaging techniques to quantify vascularization and mineralization in order to evaluate which of these tissue engineering approaches is going to be able to best and most quickly restore bone function," Guldberg said. "We’ve always known that vascularization is very important to bone repair, but we’ve never really had a good method to measure the process."

Guldberg’s team has used micro-CT imaging to study fracture healing and repair of large bone defects that can result from the removal of bone tumors or crushing injuries. Large bone defects are typically repaired with allografts because large structural pieces are available from human donors.

But allografts are processed to avoid transmitting any diseases from the donor to the patient, leaving the bone sterile but dead. Allografts therefore lack living cells that could help the implants better integrate with existing bone. Consequently, they don’t heal as well as autografts and can re-break in up to 30 percent of patients within a year. Live autograft bone integrates much better, but large amounts of bone are needed to repair a site. They are often too large to remove elsewhere in the patient’s body and cause substantial additional pain.

Georgia Tech’s micro-CT imaging facility has been used to study tissue engineering approaches to enhance or replace the use of bone grafts clinically. Guldberg and his collaborators at the University of Rochester, for example, have explored various strategies to revitalize dead allograft bone. Wrapping allografts with biomaterials containing living marrow cells or delivering bioactive genes has resulted in significantly accelerated repair and integration of allograft implants.

While a traditional bone scan can give a doctor some idea of a bone’s density, a micro-CT scan that provides high resolution 3-D data on vascularization and mineralization can provide much more detailed information about the bone’s structure and blood flow. Although not yet available clinically, these techniques give researchers an unprecedented depth of data on how a bone implant is integrating into the body.

In addition to studying bone regeneration, the ability to look at detailed 3-D images of vascular networks can shed light on research into vascular injuries, disc degeneration in the back and help detect tumors early by pinpointing areas of increased vascularization (which often indicate tumor growth).

Megan McRainey | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>