Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Customising Cancer Treatment - The Challenge Of Genetics

22.12.2004


At the Norwegian Radium Hospital in Oslo, scientists are approaching methods that will improve the patients’ chances of survival and reduce unnecessary treatment.

The cancer treatment of today involves a lot of trial and error. Cancer cells that have started to grow uncontrollably, must be stopped. We use different kinds of medicinal drugs to stop cell growth and induce apoptosis, i.e. make the cells commit suicide. However, nobody knows whether or not the chosen form of medication has an effect on the patient until it has been tried out over a period of time. There is always a risk of losing time, especially if the tumour is big and has to be treated with medication before it is possible to perform surgery.

The problem with cancer treatment today is that it does not consider the genetic variety of human beings and the fact that each individual tumour is genetically unique.



"By giving the same medication to all patients that have the same diagnosis, there is a risk that some may die in the course of the disease because the drug is not working, while others may be poisoned by excessive doses. Although most patients will recover, it is not easy to predict who will recover and who will not," says Vessela Nedelcheva Kristensen.

By conducting meticulous research and with the help of the latest, state-of-the-art instrument called Nanochip Workstation, Nedelcheva Kristensen and her research team are trying to identify the genes that have an influence on how anti-cancer drugs work on each patient. With grants from the Research Council of Norway’s National Programme for Research in Functional Genomics, FUGE, this young scientist takes part in research that may revolutionise cancer treatment. The researchers take samples from each tumour and analyse them, and they take blood samples from the patients to analyse their genetic sensitivity to an anti-cancer drug. This sensitivity varies according to each individual.

"By genetically testing each tumour, we may be able to say which form of treatment suits each patient. This is groundwork for individually tailored cancer treatment," she says.

By conducting meticulous research and with the help of the latest, state-of-the-art instrument called Nanochip Workstation, Nedelcheva Kristensen and her research team are trying to identify the genes that have an influence on how anti-cancer drugs work on each patient. With grants from the Research Council of Norway’s National Programme for Research in Functional Genomics, FUGE, this young scientist takes part in research that may revolutionise cancer treatment. The researchers take samples from each tumour and analyse them, and they take blood samples from the patients to analyse their genetic sensitivity to an anti-cancer drug. This sensitivity varies according to each individual.

"By genetically testing each tumour, we may be able to say which form of treatment suits each patient. This is groundwork for individually tailored cancer treatment," she says.

Thomas Evensen | alfa
Further information:
http://www.forskningsradet.no/forport/application?lang=en_UK

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>