Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme stretch-growth of axons

08.09.2004


Pushing neurons’ physiological limits provides researchers with new ways to repair nerve damage

Sometimes it is the extremes that point the way forward. Researchers at the University of Pennsylvania School of Medicine have induced nerve fibers – or axons – to grow at rates and lengths far exceeding what has been previously observed. To mimic extreme examples in nature and learn more about neuronal physiology, they have mechanically stretched axons at rates of eight millimeters per day, reaching lengths of up to ten centimeters without breaking. This new work has implications for spinal cord and nerve-damage therapy, since longer implantable axons are necessary for this type of repair.

In the present study, the team, led by Douglas H. Smith, MD, Professor of Neurosurgery and Director of the Center for Brain Injury and Repair, placed neurons from rat dorsal root ganglia (clusters of nerves just outside the spinal cord) on nutrient- filled plastic plates. Axons sprouted from the neurons on each plate and connected with neurons on the other plate. The plates were then slowly pulled apart over a series of days, aided by a precise computer-controlled motor system. "By rapid and continuous stretching, we end up with huge bundles of axons that are visible to the eye," says Smith. The axons started at an invisible 100 microns and have been stretched to 10 centimeters in less than two weeks. Smith and colleagues report their findings in the cover story of the September 8, 2004 issue of the Journal of Neuroscience.



"This type of stretch growth of axons is really a new perspective," says Smith. Despite the extreme growth in length, the axons substantially increased in diameter as well. Using electron microscopy, they confirmed this growth by identifying a fully formed internal skeleton and a full complement of cellular structures called organelles in the stretched axons. "Surprisingly, the axon appears to be invigorated by this extreme growth," says Smith. "It doesn’t disconnect, but forms a completely normal-appearing internal structure."

These extreme rates of growth are not consistent with the current understanding of the limitations of axon growth. "Proteins necessary to sustain this growth are somehow correctly brought to sites along the axon faster than conceivable rates of transport," notes Smith. The team suggests two possible mechanisms to explain this: increasing transport to a very fast rate or making the necessary proteins at the site, proximal to the growing axons. Smith believes that this form of growth commonly occurs in nature. "For example, it can be inferred that axons in a blue whale’s spine grow more than three centimeters a day and in a giraffe’s neck at two centimeters a day at peak growth."

The team also found that they had to condition the axons to grow in an extreme way. "Although they can handle enormous growth, you can’t just spring it on them," explains Bryan Pfister, PhD a post-doctoral fellow in Smith’s lab and coauthor of the study. "If we ramp up the stretch rate too fast, the axons will snap." From this the team surmises that in nature animals must grow at a metered pace, which allows for constant feedback and conditioning.

It has been well established that axons initially grow out from neurons and follow a chemical stimulus to connect with another neuron. However, once the axon has reached its target a relatively unknown form of stretch-growth must ensue as the animal grows. Mechanical changes in the growing brain, spine, and other bones are the starting point for natural stretch-growth in axons. "We know that it’s not tension on the neuron itself, but tension on the axon," says Smith. "It’s deformation, a pulling on the axon." At this point, it is unclear what receptors and cell signaling pathways are involved to get the process started, but from this and previous studies the investigators do report that the signal is from a mechanical stimulus along the length of the axon as opposed to a chemical stimulus. "The stretch is coming from the whole body growing," explains Smith. "For example, the growing spine bones in the whale likely exert mechanical forces on the axons in the spinal cord."

The researchers conclude that this is a genetic program for growth that has been conserved throughout animal species, but just hasn’t been studied in depth. By revealing the mechanisms of extreme-stretch growth, the team is currently applying this knowledge to develop nerve constructs to repair nerve and spinal cord damage. "To find that tension is actually good for your nerves for both growth and repair may not be such a long stretch," says Smith.

Karen Kreeger | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Health and Medicine:

nachricht The cytoskeleton of neurons has been found to be involved in Alzheimer's disease
18.01.2019 | University of the Basque Country

nachricht Bioinspired nanoscale drug delivery method developed by WSU, PNNL researchers
10.01.2019 | Washington State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>