ESC Congress 2004: Converting cells into heart muscle

Bone marrow derived stem cells can give rise to heart muscle cells. This plasticity concept – the ability of bone marrow cell to transdifferentiate into heart muscle cell – is supported by experimental and clinical data. Another possibility is to replace the missing function by causing transdifferentiation of existing cells. Transdifferentiation means converting one sort of cell, e.g. fibroblast, into another, e.g. muscle cell. There is real hope that we may be able to control this unique phenomenon to produce many heart cells to create a new heart muscle based on cells harvested from the patient himself.

These plasticity concepts have challenged the traditional dogma of tissue specific stem cell differentiation in adults and have raised hot debate. Many scientists have suggested alternative interpretations for plasticity research findings. Furthermore, recently, the debate regarding bone marrow and other adult stem cell plasticity has moved into the political and public zone. Opponents of human embryonic stem cell research see the plasticity of adult cells as a means of avoiding the use of human blastocysts (embryos a few days old) that is required to obtain pluripotent embryonic stem cells.

Despite the plasticity controversy and our limited understanding of stem cell plasticity, we hope that if we can control this process we may be able to use adult cells to produce new heart tissue for transplant and heart repair. J Leor (TEl Hashomer, IL)

Media Contact

Camilla Dormer alfa

More Information:

http://www.escardio.org

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Why getting in touch with our ‘gerbil brain’ could help machines listen better

Macquarie University researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more…

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Chemical reactions are complex mechanisms. Many different dynamical processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often the strongly coupled electron and nuclear…

Free-forming organelles help plants adapt to climate change

Scientists uncover how plants “see” shades of light, temperature. Plants’ ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their…

Partners & Sponsors