Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene changes linked to increased eye pressure may have implications for glaucoma therapy

13.08.2004


University of North Carolina at Chapel Hill scientists have discovered that increased pressure within the eye alters a set of genes normally involved in preventing hardening of tissue.

Increased eye pressure often occurs in glaucoma, a blinding eye disease that affects about 70 million people worldwide, and the new findings may have implications for treating this disease. The study currently appears in the online October issue of the Journal of Cellular Physiology.

"Pressure is required in the eye to keep its shape, and this pressure is maintained in the front part of the eye by a fluid, the aqueous humor," said Dr. Teresa Borrás, the paper’s senior author and professor of ophthalmology in UNC’s School of Medicine. From 1997 to 2002, Borrás held a Research to Prevent Blindness Jules and Doris Stein Professorship Award.



The aqueous humor is created by the ciliary body, a tissue beneath the eye’s iris. The fluid flows around the iris and out through the trabecular meshwork, or TM, a spongy tissue that provides resistance and maintains the pressure, Borrás said.

Often in glaucoma, the TM stops working and fluid builds up within the eye, causing pressure inside the eye to rise. When this happens, the optic nerve in the back of the eye can become squeezed. As this is the area that carries the visual signals from eye to brain, vision loss can occur, Borrás said.

In earlier studies, Borrás and her research group had shown that a greater outflow of fluid occurred when researchers artificially increased the pressure in human donor eyes.

"It was like the TM had a homeostatic counteracting mechanism that could sense an increase in pressure and open up a little bit, to help move the fluid out of the eye," said Borrás.

However, it was unclear how the TM achieved this pressure regulation. This study was aimed at measuring what genes were turned on or off in the TM after the pressure was increased, Borrás added.

The UNC scientists knew that the homeostatic mechanism would involve sensing and triggering other genes. They were not surprised that most of the genes that were turned on fell into the group responsible for the cell signaling processes, Borrás said.

But unexpectedly, the genes switched on included two known from previous work to be involved in bone physiology: matrix Gla protein (MGP) and perlecan. In addition, the gene for spectrin, a protein that alters cell shape, was switched off.

MGP prevents the hardening of cartilage to bone, and perlecan has been implicated in allowing tissue to withstand compression, Borrás said. Spectrin helps maintain cell shape. Thus, when spectrin is switched off, cells are more easily deformed.

"It appears that these proteins help keep the TM soft, which would make the outflow of fluid easier and help to maintain normal pressure," said Borrás.

The research team now is trying to better understand the role of these proteins in the regulation of pressure by the TM. "Our goal is to determine if one of these proteins can be used to treat glaucoma," said Borrás.

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Health and Medicine:

nachricht UC San Diego cancer scientists identify new drug target for multiple tumor types
12.07.2019 | University of California - San Diego

nachricht Bacteria engineered as Trojan horse for cancer immunotherapy
04.07.2019 | Columbia University School of Engineering and Applied Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Tracking down climate change with radar eyes

17.07.2019 | Earth Sciences

Researchers build transistor-like gate for quantum information processing -- with qudits

17.07.2019 | Information Technology

A new material for the battery of the future, made in UCLouvain

17.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>