Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene changes linked to increased eye pressure may have implications for glaucoma therapy

13.08.2004


University of North Carolina at Chapel Hill scientists have discovered that increased pressure within the eye alters a set of genes normally involved in preventing hardening of tissue.

Increased eye pressure often occurs in glaucoma, a blinding eye disease that affects about 70 million people worldwide, and the new findings may have implications for treating this disease. The study currently appears in the online October issue of the Journal of Cellular Physiology.

"Pressure is required in the eye to keep its shape, and this pressure is maintained in the front part of the eye by a fluid, the aqueous humor," said Dr. Teresa Borrás, the paper’s senior author and professor of ophthalmology in UNC’s School of Medicine. From 1997 to 2002, Borrás held a Research to Prevent Blindness Jules and Doris Stein Professorship Award.



The aqueous humor is created by the ciliary body, a tissue beneath the eye’s iris. The fluid flows around the iris and out through the trabecular meshwork, or TM, a spongy tissue that provides resistance and maintains the pressure, Borrás said.

Often in glaucoma, the TM stops working and fluid builds up within the eye, causing pressure inside the eye to rise. When this happens, the optic nerve in the back of the eye can become squeezed. As this is the area that carries the visual signals from eye to brain, vision loss can occur, Borrás said.

In earlier studies, Borrás and her research group had shown that a greater outflow of fluid occurred when researchers artificially increased the pressure in human donor eyes.

"It was like the TM had a homeostatic counteracting mechanism that could sense an increase in pressure and open up a little bit, to help move the fluid out of the eye," said Borrás.

However, it was unclear how the TM achieved this pressure regulation. This study was aimed at measuring what genes were turned on or off in the TM after the pressure was increased, Borrás added.

The UNC scientists knew that the homeostatic mechanism would involve sensing and triggering other genes. They were not surprised that most of the genes that were turned on fell into the group responsible for the cell signaling processes, Borrás said.

But unexpectedly, the genes switched on included two known from previous work to be involved in bone physiology: matrix Gla protein (MGP) and perlecan. In addition, the gene for spectrin, a protein that alters cell shape, was switched off.

MGP prevents the hardening of cartilage to bone, and perlecan has been implicated in allowing tissue to withstand compression, Borrás said. Spectrin helps maintain cell shape. Thus, when spectrin is switched off, cells are more easily deformed.

"It appears that these proteins help keep the TM soft, which would make the outflow of fluid easier and help to maintain normal pressure," said Borrás.

The research team now is trying to better understand the role of these proteins in the regulation of pressure by the TM. "Our goal is to determine if one of these proteins can be used to treat glaucoma," said Borrás.

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Health and Medicine:

nachricht Candidate Ebola vaccine still effective when highly diluted, macaque study finds
21.10.2019 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Autism spectrum disorder risk linked to insufficient placental steroid
21.10.2019 | Children's National Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>