Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene changes linked to increased eye pressure may have implications for glaucoma therapy

13.08.2004


University of North Carolina at Chapel Hill scientists have discovered that increased pressure within the eye alters a set of genes normally involved in preventing hardening of tissue.

Increased eye pressure often occurs in glaucoma, a blinding eye disease that affects about 70 million people worldwide, and the new findings may have implications for treating this disease. The study currently appears in the online October issue of the Journal of Cellular Physiology.

"Pressure is required in the eye to keep its shape, and this pressure is maintained in the front part of the eye by a fluid, the aqueous humor," said Dr. Teresa Borrás, the paper’s senior author and professor of ophthalmology in UNC’s School of Medicine. From 1997 to 2002, Borrás held a Research to Prevent Blindness Jules and Doris Stein Professorship Award.



The aqueous humor is created by the ciliary body, a tissue beneath the eye’s iris. The fluid flows around the iris and out through the trabecular meshwork, or TM, a spongy tissue that provides resistance and maintains the pressure, Borrás said.

Often in glaucoma, the TM stops working and fluid builds up within the eye, causing pressure inside the eye to rise. When this happens, the optic nerve in the back of the eye can become squeezed. As this is the area that carries the visual signals from eye to brain, vision loss can occur, Borrás said.

In earlier studies, Borrás and her research group had shown that a greater outflow of fluid occurred when researchers artificially increased the pressure in human donor eyes.

"It was like the TM had a homeostatic counteracting mechanism that could sense an increase in pressure and open up a little bit, to help move the fluid out of the eye," said Borrás.

However, it was unclear how the TM achieved this pressure regulation. This study was aimed at measuring what genes were turned on or off in the TM after the pressure was increased, Borrás added.

The UNC scientists knew that the homeostatic mechanism would involve sensing and triggering other genes. They were not surprised that most of the genes that were turned on fell into the group responsible for the cell signaling processes, Borrás said.

But unexpectedly, the genes switched on included two known from previous work to be involved in bone physiology: matrix Gla protein (MGP) and perlecan. In addition, the gene for spectrin, a protein that alters cell shape, was switched off.

MGP prevents the hardening of cartilage to bone, and perlecan has been implicated in allowing tissue to withstand compression, Borrás said. Spectrin helps maintain cell shape. Thus, when spectrin is switched off, cells are more easily deformed.

"It appears that these proteins help keep the TM soft, which would make the outflow of fluid easier and help to maintain normal pressure," said Borrás.

The research team now is trying to better understand the role of these proteins in the regulation of pressure by the TM. "Our goal is to determine if one of these proteins can be used to treat glaucoma," said Borrás.

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Health and Medicine:

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>