Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neurosurgeons at Rush are the first in the midwest to implant investigational neurostimulator

06.08.2004


Neurosurgeons at Rush University Medical Center are the first in Chicago to implant a new investigational neurostimulator in a patient with medically refractory epilepsy. The neurostimulator may be able to suppress seizures in patients with epilepsy before any symptoms appear, much like the commonly implanted heart pacemakers which stop heart arrhythmias before any symptoms occur.



Dr. Richard W. Byrne, neurosurgeon at Rush and member of the Chicago Institute of Neurosurgery and Neuroresearch Medical Group (CINN), performed the first implant on Tuesday, June 29, on an Indiana man unlikely to benefit from surgical resection.

Byrne says this is the "Holy Grail" in epilepsy surgery and the most exciting thing he’s seen. "This device might help epilepsy patients who do not respond to current medical treatment, testing an entirely new concept in treating medically refractory epilepsy."


"Our first implanted patient has two distinct epileptic foci, one on each side of the brain, producing two different seizures so traditional surgical resection was not an option," said neurologist Dr. Michael C. Smith, the patient’s physician and co-principal investigator of the study. "Placing implants on each side of his brain at his sites of seizure onset will allow detection and treatment of his seizures much like an implantable defibrillator of the heart. If you view an epileptic seizure as a brain arrhythmia, electrical stimulation may return it to a more normal rhythm."

Until now, surgical treatments have generally involved removal of parts of the brain responsible for triggering seizures. Neurologist Dr. Donna Bergen, co-principal investigator of the study, says this new approach not only avoids removal of brain tissue, but also allows therapy to be delivered to the brain only ’on demand,’ when a seizure is actually starting to appear.

"The research device is made up of two elements, one which will record the patient’s brainwaves (EEG) and one which will deliver small electrical pulses to the brain. The device, about the size of a small pocket watch, was surgically placed in the patient’s skull by Dr. Byrne," says Bergen.

Byrne made a small opening in the skull, placing the neurostimulator in a tray-like holder fastened to bone. The neurostimulator has two electrode wires that were precisely placed in areas of the brain where the seizures had been found to originate during preliminary testing. The electrodes can lie on the brain or be placed into locations deep within the brain. After surgery, the patient is not able to see or feel the device in the head.

"This responsive neurostimulator system is an incredibly sophisticated, quite remarkable system. Everything is closed up in the skull, so it is a self-contained system and designed to be responsive to abnormal activity in the brain," says Bergen. "When a seizure onset is detected, tiny electrical pulses will be delivered, in hopes of disrupting the abnormal brain activity and stopping the seizure."

Byrne describes this neurostimulator as a "closed loop system" and says it’s unlike the vagus nerve stimulator used in some patients with epilepsy.

The vagus nerve stimulator is programmed to stimulate at timed-intervals. If a seizure begins between intervals, the patient activates the stimulator by swiping a magnet over their chest at the location where the device is implanted.

The new investigational neurostimulator system monitors and will attempt to treat seizures. The neurostimulator reads the EEG, sees an onset of a seizure, and then sends an electrical impulse to the brain in an attempt to disrupt the seizure. The patient does not need to activate the stimulator.

Following surgery, patients in the study will come to Rush for scheduled office visits. Neurologist Dr. Marvin Rossi will use a computer to program the neurostimulator to "read the patient’s seizure." When the neurostimulator senses a seizure beginning, the electrodes stimulate that part of the brain in an attempt to stop the seizure. In addition to Rush University Medical Center, nine other medical centers across the country are involved in the study.

Rush University Medical Center includes the 824-bed Presbyterian-St. Luke’s Hospital; 110-bed Johnston R. Bowman Health Center; Rush University Medical College, College of Nursing, College of Health Sciences and the Graduate College.

The Chicago Institute of Neurosurgery and Neuroresearch is one of the nation’s leading organizations for the diagnosis, treatment and rehabilitation of people with brain and spine disorders. Originally founded in 1987, CINN is the Midwests largest team of neurosurgeons known for their pioneering treatments in minimally invasive techniques. Through a network of eight hospitals spanning two states, CINN treats more patients with brain tumors and spine disorders than any other physician group in Illinois.

Mary Ann Schultz | EurekAlert!
Further information:
http://www.rush.edu

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>