Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common Virus find in Human prostate tissue

06.08.2004


Study suggests possible role for BK virus in prostate cancer

Chances are excellent that your urinary tract is home to a pathogenic organism called the human BK virus. Most of the time, the virus lurks quietly in the kidneys without causing problems. But in people with a depressed immune system — especially those who have just received a kidney transplant — the virus can cause serious kidney and bladder disease. Now, new research by scientists at the University of Michigan Medical School suggests the intriguing possibility that this common virus also may play a role in prostate cancer — the second-leading cause of deaths from cancer in American men.

A team of scientists directed by Michael J. Imperiale, Ph.D., U-M professor of microbiology and immunology, have found DNA and proteins from the BK virus in prostate tissue with abnormal cell changes. Called atrophic lesions, these changes can be the first step in a series of progressive cell changes leading to prostate cancer.



"Other studies have detected DNA from the BK virus in prostate cancer cells, but this study is the first to pinpoint the location of viral protein expression to one precursor stage in the development of prostate cancer, and to a specific location within prostate cells," Imperiale says. Results from the U-M study, published July 19 in the advance online edition of the journal Oncogene, are available at www.nature.com/onc/journal/vaop/ncurrent/.

"The development of cancer is a multi-step process," Imperiale adds. "Expression of BK viral protein may be just one step among several genetic and environmental factors. We are not saying that BK virus causes prostate cancer, but our results do suggest that the virus plays a role in the transition from normal to uncontrolled growth of prostate cells."

BK is a human virus in the polyomavirus family. It was first discovered in kidney transplant patients who take immunosuppressive drugs to prevent their body from rejecting a new kidney. Scientists have found BK virus in several types of human cancer and it has been shown to cause kidney tumors in laboratory mice. While the virus has received scientific study for its role in kidney disease, only a handful of scientists are studying a possible connection to cancer.

"Polyomaviruses have very small genomes, and they don’t have the genes required to copy their own DNA," says Dweepanita Das, Ph.D., a U-M post-doctoral fellow and first author on the paper. "The virus must induce its host cell to divide, so it can use the cell’s genes to make proteins the virus needs to reproduce. BK virus uses a protein called T antigen, or TAg, to induce cell division. The problem is that when you interrupt the normal cell cycle to force a cell to divide, sometimes the cell continues to divide abnormally."

U-M scientists analyzed 21 samples of prostate tissue from men with adenocarcinoma whose prostates were surgically removed to prevent the spread of cancer. Tissue samples were obtained from the Tissue Procurement Core at the U-M’s Comprehensive Cancer Center. Samples contained benign, pre-cancerous and cancerous tissue.

Using new TAg-specific protein assays they developed, the research team searched the tissue to identify cells containing TAg. Scientists also removed DNA from the prostate tissue samples for sequencing and identification in the U-M’s DNA Sequencing Core facility.

The results showed that 71 percent of the prostate samples analyzed for the study contained gene segments from the BK virus. TAg protein from the BK virus was present in 43 percent of the tissue samples, but only in atrophic lesions — a precursor stage of prostate cancer development. TAg was not expressed in normal cells or cancerous cells.

"Atrophic lesions comprise a spectrum of architectural and cytological differences in the appearance of epithelial cells lining the glands in the prostate," says Rajal B. Shah, M.D. M.B.B.S., a clinical assistant professor of pathology and urology in the U-M Medical School and co-author of the study. "Several recent studies have demonstrated that they potentially represent the first stage in a series of progressive cell changes, which can lead to prostate cancer."

In addition to TAg protein, atrophic lesions also contained high levels of protein expressed by the p53 tumor suppressor gene. When U-M scientists discovered that TAg and p53 proteins were located together in the cytoplasm of atrophic lesion cells, but not in the nucleus, an important piece of the puzzle fell into place.

"We know that for p53 to function as a tumor suppressor gene, its protein product must be in the cell’s nucleus," explains Imperiale. "TAg apparently sequesters p53 protein in the cell’s cytoplasm, preventing it from entering the nucleus and giving the signal for the cell to stop dividing and die."

Imperiale’s working hypothesis is that the BK virus infects epithelial cells in the prostate and transforms them into atrophic lesions through TAg expression. This produces an area of uncontrolled cell growth, which — if circumstances are right — can eventually develop into prostate cancer.

If he’s right, prostate cancer may have something in common with cervical cancer, which is caused by a different virus — the human papillomavirus.

"Papillomavirus makes proteins with the same function as T antigen," Imperiale says. "They induce cell growth and inactivate the p53 gene, preventing it from killing abnormal cells. So, it’s a logical possibility that a similar mechanism occurs in at least some cases of prostate cancer, but much additional research will be needed before we can know for sure."

Sally Pobojewski | EurekAlert!
Further information:
http://www.umich.edu

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>