Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

We learn while we sleep - Link discovered between slow brain waves and learning success

30.06.2004


If you want to pass an exam, be sure to get some good sleep before-hand. Because in sleep the brain processes and consolidates newly learnt matter. This is revealed in a new study shortly to be published in Nature. The study was supported by the Swiss National Science Foundation (SNSF).

As soon as deep sleep sets in, the brain cells start working in concord. Like football fans raising their hands in unison during a Mexican wave, millions of individual brain cells respond simultaneously with an electric signal. They thus generate the regular, low-frequency brain waves that are characteristic of deep sleep. Until now, the purpose of this brain activity was largely unknown. The shortly to be published study puts this function in a new context. Slow brain waves appear to consolidate and reinforce freshly learnt matter, explains Reto Huber, who conducted the study at the University of Wisconsin laboratory of Giulio Tononi in Madison, USA. The study is due for publication in the prestigious science journal Nature* on 1 July. Reto Huber holds a grant from the Swiss Foundation for Medical-Biological Scholarships (SSMBS) that was financed by the Swiss National Science Foundation.

For the purpose of the study, Reto Huber set 12 subjects a special learning task and then measured their brain activity during sleep. The subjects first had to accomplish a learning test on a computer. The basically simple task consisted of using a mouse to move the cursor to a set point on the screen. Subconsciously, however, they were learning new motor skills, because what the subjects did not know was that the computer was programmed to generate a slight aberration in the direction of the cursor movement, which they had to compensate for by modifying the mouse movements. Moreover, since their hand was covered during the experiment they did not realize the computer was playing tricks on them. Conscious learning very often involves many areas of the brain, which would have made it much harder to demonstrate local activation, explains Huber.



Such unconscious motor skills learning takes place in a small, thumbsized region of the right cerebral cortex, as other researchers have already shown. Reto Huber now wanted to find out whether this region of the brain displayed any special activity during sleep. To this end, he recorded the brain wave activities of the study subjects in their sleep by means of 256 electrodes attached all over their heads.

The large number of electrodes enabled Huber not only to register, but also to pinpoint the precise location of brain activity.

The deeper you sleep, the better you learn

And indeed the young Swiss researcher discovered what many brain researchers considered impossible. We noticed larger slow brain waves in the area of the brain that had been used for the test and nowhere else, said Huber. Not only that. The subjects who were most successful at mastering the test the next morning were also those whose brains had produced especially large slow waves during the night. The night-time brain waves seemed not only to have consolidated, but also to have enhanced performance in the computer-based test. Our study provides the first evidence that sleep plays an important role in learning processes, concludes Huber.

Scientists are still largely in the dark about the processes that actually take place in the brain during sleep at night or an afternoon nap. In particular, what happens at synapse level is largely unknown. Sleep researchers are considering the possibility that nighttime brain activity tests and sorts out newly created synapses. Important synapses would be retained and reinforced, unimportant ones disconnected. The slow brain waves may be performing a functional test of the synapses, says Huber.

Alexander Borbély, the Zurich sleep scientist under whose tutelage Huber obtained his doctorate, is impressed by these latest results. They prove that sleep can have highly localized effects on the brain. I believe these are very important findings.

Philippe Trinchan | CORDIS Wire
Further information:
http://www.snf.ch

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>