Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CP-675,206, a novel monoclonal antibody, enlists the immune system to fight advanced melanoma

07.06.2004


Early testing of an experimental human monoclonal antibody showed a striking benefit in patients with advanced melanoma, say researchers at The University of Texas M. D. Anderson Cancer Center, who presented their findings at the annual meeting of the American Society of Clinical Oncology.



Of 39 patients given a single injection of CP-675,206 (known as CP-675), tumors disappeared in three patients, shrunk in a fourth patient, and cancer stopped growing in five other patients. These responses have remained since their initial treatment, which ranged from 13 to 28 months ago.

Most of the patients in the trial had advanced melanoma, which has a median survival of less than a year, says the study’s principal investigator, Luis Camacho, M.D., MPH, assistant professor in the Department of Melanoma Medical Oncology.


"We were very pleasantly surprised to find such objective antitumor responses in a Phase I clinical trial, which is designed to find the ideal dose and to look for side effects," says Camacho. "These results are very early, but they are encouraging to us because there are no good agents available to treat melanoma once it has spread."

The researchers gradually increased the amount of the initially tested dose by 1,500 fold, evaluating seven different dose levels, before they found higher doses that both produced an effect and had tolerable side effects. Most of the patients who did not respond to the drug were those treated with the lower doses, the investigators say.

The study was conducted at M. D. Anderson Cancer Center and at the University of California, Los Angeles. A collaborating researcher is Jesus Gomez Navarro, M.D., clinical director of the monoclonal antibody program at Pfizer, Inc., which developed the antibody and is sponsoring the clinical trial.

The researchers say the antibody seems to act as a "nonspecific immune booster" which enlists the immune system to fight cancer. It acts by blocking a key negative regulator of the activity of the immune system. This regulator, cytotoxic T lymphocyte-associated antigen 4 (CTLA4), stops activated immune cells from attacking the body’s own tissues. The antibody, in turn, stops the function of CTLA4, a receptor that works as "the brakes" of the immune system.

Like a vaccine, CP-675 seems to continue to work long after patients receive the single two- to four-hour injection, Camacho says. "We believe the monoclonal antibody enlists the immune system to fight any new cancer cells trying to grow," he says.

The antibody may work particularly well in melanoma, he adds, because previous research has shown the immune system, if activated, can recognize this cancer.

Because the antibody allowed the immune system to attack cells that "looked" similar to the body’s own, researchers worried that it could produce autoimmune disorders such as rheumatoid arthritis. But the only side effects that were observed, including rashes and diarrhea, occurred at the highest doses and were resolved without long-term problems, Camacho says.

Based on the results, Pfizer has launched a Phase II study, which is enrolling 100 patients at seven institutions nationwide. Camacho will serve as the principal investigator for this trial as well.


Additional contact information:

Laura Sussman
ASCO
Cell: 832-264-8893

Julie Penne
Tel: 713-792-0655

Julie Penne | EurekAlert!

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>