Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CP-675,206, a novel monoclonal antibody, enlists the immune system to fight advanced melanoma

07.06.2004


Early testing of an experimental human monoclonal antibody showed a striking benefit in patients with advanced melanoma, say researchers at The University of Texas M. D. Anderson Cancer Center, who presented their findings at the annual meeting of the American Society of Clinical Oncology.



Of 39 patients given a single injection of CP-675,206 (known as CP-675), tumors disappeared in three patients, shrunk in a fourth patient, and cancer stopped growing in five other patients. These responses have remained since their initial treatment, which ranged from 13 to 28 months ago.

Most of the patients in the trial had advanced melanoma, which has a median survival of less than a year, says the study’s principal investigator, Luis Camacho, M.D., MPH, assistant professor in the Department of Melanoma Medical Oncology.


"We were very pleasantly surprised to find such objective antitumor responses in a Phase I clinical trial, which is designed to find the ideal dose and to look for side effects," says Camacho. "These results are very early, but they are encouraging to us because there are no good agents available to treat melanoma once it has spread."

The researchers gradually increased the amount of the initially tested dose by 1,500 fold, evaluating seven different dose levels, before they found higher doses that both produced an effect and had tolerable side effects. Most of the patients who did not respond to the drug were those treated with the lower doses, the investigators say.

The study was conducted at M. D. Anderson Cancer Center and at the University of California, Los Angeles. A collaborating researcher is Jesus Gomez Navarro, M.D., clinical director of the monoclonal antibody program at Pfizer, Inc., which developed the antibody and is sponsoring the clinical trial.

The researchers say the antibody seems to act as a "nonspecific immune booster" which enlists the immune system to fight cancer. It acts by blocking a key negative regulator of the activity of the immune system. This regulator, cytotoxic T lymphocyte-associated antigen 4 (CTLA4), stops activated immune cells from attacking the body’s own tissues. The antibody, in turn, stops the function of CTLA4, a receptor that works as "the brakes" of the immune system.

Like a vaccine, CP-675 seems to continue to work long after patients receive the single two- to four-hour injection, Camacho says. "We believe the monoclonal antibody enlists the immune system to fight any new cancer cells trying to grow," he says.

The antibody may work particularly well in melanoma, he adds, because previous research has shown the immune system, if activated, can recognize this cancer.

Because the antibody allowed the immune system to attack cells that "looked" similar to the body’s own, researchers worried that it could produce autoimmune disorders such as rheumatoid arthritis. But the only side effects that were observed, including rashes and diarrhea, occurred at the highest doses and were resolved without long-term problems, Camacho says.

Based on the results, Pfizer has launched a Phase II study, which is enrolling 100 patients at seven institutions nationwide. Camacho will serve as the principal investigator for this trial as well.


Additional contact information:

Laura Sussman
ASCO
Cell: 832-264-8893

Julie Penne
Tel: 713-792-0655

Julie Penne | EurekAlert!

More articles from Health and Medicine:

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>