Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M scientists use 21st-century technology to probe secrets of M. tuberculosis

27.05.2004


Computer model shows why some get sick after TB infection, while others don’t



University of Michigan microbiologists have created a virtual model of the human immune system that runs "in silico" to study what happens inside the lungs after people inhale Mycobacterium tuberculosis, the bacterium that causes TB.

The computer model is helping scientists learn more about this ancient pathogen, and why some people are able to fight off the infection, while others get sick. U-M scientists believe the answer could be hidden inside structures called granulomas, which immune cells build to surround and contain invading M. tuberculosis bacteria.


"Granulomas are the hallmark of tuberculosis," says Denise Kirschner Ph.D., an associate professor of microbiology and immunology in the U-M Medical School. "It’s the immune system’s fail-safe response to infection. If the immune system can’t clear the pathogen, it gets out the masonry and walls it off."

Kirschner presented research results and an analysis of time-lapse computer animations showing granuloma formation at a May 26 seminar during the American Society for Microbiology’s annual meeting held here this week.

"M. tuberculosis has been living with people for at least 4,000 years," says Kirschner. "Because the bug has had all those years to get to know us so well, it has evolved several effective ways to circumvent the immune system’s ability to detect and kill invading pathogens. Scientific knowledge of how the immune system interacts with M. tuberculosis is slowly improving, but we are far from prevention or an effective vaccine. It’s important to understand TB, because the disease is a serious and growing public health problem."

According to Kirschner, approximately 2 billion people worldwide are infected with M. tuberculosis, and the disease kills about 3 million people every year. In the early stages of infection, tuberculosis can be treated with powerful antibiotics, but there is no cure. And multi-drug-resistant strains, which are essentially untreatable, are becoming more common.

The immune system’s immediate response to the presence of M. tuberculosis in the lungs is to surround the bacteria with immune cells called macrophages, which signal other immune cells to join them for a group assault on the invading bacteria, Kirschner says. About 90 percent of the time, these multi-cellular structures called granulomas are enough to stop the bacteria from spreading. Although the individual will always be infected with TB bacteria, the disease will remain in a latent phase and produce no symptoms, unless it flares up again later in life.

Between 5 percent to 10 percent of the time, however, granulomas fail to contain the bacteria. Unless the disease is diagnosed and treated, TB bacteria will continue to spread through the lungs, eventually producing severe respiratory symptoms and death.

Since granulomas are the key counter-offensive in the war between the human host and M. tuberculosis, Kirschner and U-M post-doctoral fellows Jose Segovia-Juarez, Ph.D., and Suman Ganguli, Ph.D., programmed their computer model with experimental data from studies - directed by University of Pittsburgh collaborator Joanne Flynn, Ph.D. - of research animals infected with TB. They then created time-lapse animations demonstrating what happens as a granuloma forms after initial infection with the bacteria.

When they analyzed the results of the computer simulation, Kirschner and her research team found new clues to the immune system’s containment process:

- Granulomas that were unable to contain TB bacteria were packed with inactive macrophages, making it impossible for T cells to get inside the granuloma and properly signal the macrophages to attack and kill M. tuberculosis bacteria. - The arrival time, number and location of "educated" T cells, which had been primed by the immune system to signal macrophages to attack M. tuberculosis, were crucial to the success of the immune response.

- The slow reproduction rate of M. tuberculosis bacteria, which doubles about every two days, helps the bacteria survive undetected inside macrophages for long periods of time.

Mathematical models are a valuable addition to experimental research, because they make it possible to study complex biological systems with many variables in ways that would be impossible in humans or research animals.

"Here we used a new approach called agent-based modeling, which allowed us to track the individual behavior of specific cells in the system and how they contributed to the collective outcome," Kirschner says. "This is one of first applications of this method in studies of infectious diseases within the host."



Kirschner’s research is funded by the National Heart, Lung and Blood Institute of the National Institutes of Health.

Note: Animations of granuloma formation described in this story can be viewed in AVI format on the Web at http://malthus.micro.med.umich.edu/lab/abm/movies/. The first version (clearance.avi) shows what happens to the granuloma when the immune system is able to destroy the bacteria. The second version (containment.avi) shows granuloma formation when infection is contained. The third version (dissemination.avi) shows what happens to the granuloma when the infection is not contained.

Cells are color coded as follows: Inactive macrophages (green), activated macrophages (blue), infected macrophages (orange), chronically infected macrophages (red), T cells (pink), necrotic tissue (brown) and extracellular bacteria (yellow).

Additional Contact:
Kara Gavin, kegavin@umich.edu, 734-764-2220

Sally Pobojewski | EurekAlert!
Further information:
http://malthus.micro.med.umich.edu/lab/abm/movies/

More articles from Health and Medicine:

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>