Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M scientists use 21st-century technology to probe secrets of M. tuberculosis

27.05.2004


Computer model shows why some get sick after TB infection, while others don’t



University of Michigan microbiologists have created a virtual model of the human immune system that runs "in silico" to study what happens inside the lungs after people inhale Mycobacterium tuberculosis, the bacterium that causes TB.

The computer model is helping scientists learn more about this ancient pathogen, and why some people are able to fight off the infection, while others get sick. U-M scientists believe the answer could be hidden inside structures called granulomas, which immune cells build to surround and contain invading M. tuberculosis bacteria.


"Granulomas are the hallmark of tuberculosis," says Denise Kirschner Ph.D., an associate professor of microbiology and immunology in the U-M Medical School. "It’s the immune system’s fail-safe response to infection. If the immune system can’t clear the pathogen, it gets out the masonry and walls it off."

Kirschner presented research results and an analysis of time-lapse computer animations showing granuloma formation at a May 26 seminar during the American Society for Microbiology’s annual meeting held here this week.

"M. tuberculosis has been living with people for at least 4,000 years," says Kirschner. "Because the bug has had all those years to get to know us so well, it has evolved several effective ways to circumvent the immune system’s ability to detect and kill invading pathogens. Scientific knowledge of how the immune system interacts with M. tuberculosis is slowly improving, but we are far from prevention or an effective vaccine. It’s important to understand TB, because the disease is a serious and growing public health problem."

According to Kirschner, approximately 2 billion people worldwide are infected with M. tuberculosis, and the disease kills about 3 million people every year. In the early stages of infection, tuberculosis can be treated with powerful antibiotics, but there is no cure. And multi-drug-resistant strains, which are essentially untreatable, are becoming more common.

The immune system’s immediate response to the presence of M. tuberculosis in the lungs is to surround the bacteria with immune cells called macrophages, which signal other immune cells to join them for a group assault on the invading bacteria, Kirschner says. About 90 percent of the time, these multi-cellular structures called granulomas are enough to stop the bacteria from spreading. Although the individual will always be infected with TB bacteria, the disease will remain in a latent phase and produce no symptoms, unless it flares up again later in life.

Between 5 percent to 10 percent of the time, however, granulomas fail to contain the bacteria. Unless the disease is diagnosed and treated, TB bacteria will continue to spread through the lungs, eventually producing severe respiratory symptoms and death.

Since granulomas are the key counter-offensive in the war between the human host and M. tuberculosis, Kirschner and U-M post-doctoral fellows Jose Segovia-Juarez, Ph.D., and Suman Ganguli, Ph.D., programmed their computer model with experimental data from studies - directed by University of Pittsburgh collaborator Joanne Flynn, Ph.D. - of research animals infected with TB. They then created time-lapse animations demonstrating what happens as a granuloma forms after initial infection with the bacteria.

When they analyzed the results of the computer simulation, Kirschner and her research team found new clues to the immune system’s containment process:

- Granulomas that were unable to contain TB bacteria were packed with inactive macrophages, making it impossible for T cells to get inside the granuloma and properly signal the macrophages to attack and kill M. tuberculosis bacteria. - The arrival time, number and location of "educated" T cells, which had been primed by the immune system to signal macrophages to attack M. tuberculosis, were crucial to the success of the immune response.

- The slow reproduction rate of M. tuberculosis bacteria, which doubles about every two days, helps the bacteria survive undetected inside macrophages for long periods of time.

Mathematical models are a valuable addition to experimental research, because they make it possible to study complex biological systems with many variables in ways that would be impossible in humans or research animals.

"Here we used a new approach called agent-based modeling, which allowed us to track the individual behavior of specific cells in the system and how they contributed to the collective outcome," Kirschner says. "This is one of first applications of this method in studies of infectious diseases within the host."



Kirschner’s research is funded by the National Heart, Lung and Blood Institute of the National Institutes of Health.

Note: Animations of granuloma formation described in this story can be viewed in AVI format on the Web at http://malthus.micro.med.umich.edu/lab/abm/movies/. The first version (clearance.avi) shows what happens to the granuloma when the immune system is able to destroy the bacteria. The second version (containment.avi) shows granuloma formation when infection is contained. The third version (dissemination.avi) shows what happens to the granuloma when the infection is not contained.

Cells are color coded as follows: Inactive macrophages (green), activated macrophages (blue), infected macrophages (orange), chronically infected macrophages (red), T cells (pink), necrotic tissue (brown) and extracellular bacteria (yellow).

Additional Contact:
Kara Gavin, kegavin@umich.edu, 734-764-2220

Sally Pobojewski | EurekAlert!
Further information:
http://malthus.micro.med.umich.edu/lab/abm/movies/

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>