Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke Scientists Identify New Way To Block Blood Vessels That Feed Cancer Growth

21.05.2004


Scientists from Duke University Medical Center have identified the "master switch" that cancer cells use to dispatch protective messages to nearby blood vessels, fortifying the vessels against deadly onslaughts of radiation.



The messages enable blood vessels to survive and ultimately nourish any remaining cancer cells that escape toxic radiation therapy.

Radiation biologists from the Duke Comprehensive Cancer Center identified the master switch as a protein called "Hypoxia Inducible Factor" (HIF-1) that turns on production of these protective messages.


They suppressed HIF-1 with experimental drugs given together with radiation therapy in animals with cancer. In doing so, they successfully inhibited blood vessel growth in tumors and, thereby, the growth of tumors themselves.

The Duke scientists hope to test this potential new therapy plus radiation in humans within the very near future. Results of their current findings are reported in the May, 2004, issue of Cancer Cell.

"HIF-1 is the switch inside cancer cells that gets turned on by radiation therapy," said Mark Dewhirst, Ph.D., DVM, professor of radiation oncology at Duke and principal investigator of the study. "Once it is activated, HIF-1 then triggers the production of well-known growth factors such as VEGF and bFGF, as well as more than forty different protein signals that regulate tumor metabolism, metastasis and angiogenesis." Angiogenesis is the process by which cancer cells grow new blood vessels to nourish and sustain themselves.

"By blocking the master switch, we effectively blocked many of the proteins which promote angiogenesis," said Dewhirst.

The Duke discovery follows dozens of recent developments in the field of anti-angiogenesis, in which scientists have attempted to block specific proteins that give rise to or protect tumor-feeding blood vessels.

The most noteworthy success has been Avastin, the first drug to be approved by the FDA to suppress angiogenesis in patients with spreading colorectal cancer. Avastin inhibits the protein VEGF and has been shown to extend patients’ lives when taken together with chemotherapy.

Dewhirst and first author Benjamin Moeller said their technique of suppressing HIF-1 expression could, theoretically, be a more potent inhibitor of blood vessel survival than the current approach of just suppressing a single protein, such as VEGF.

"We’re employing a treatment strategy where we accomplish two hits -- killing the cancer cells with radiation and blocking their blood vessel survival with an anti-HIF drug," said Moeller, a graduate student in the Duke M.D./Ph.D. program. "By pinpointing and blocking the source of all the signals, we have successfully halted the cancerous blood vessel growth in animals without harming normal blood vessels."

Approximately half of all cancer patients in the U.S. are treated with radiation therapy. However, the success of therapy depends largely on how sensitive a tumor’s blood vessels are to radiation. If blood vessels in the tumor survive after radiation, they can provide nutrients to the surviving cancer cells to begin rebuilding the tumor.

Thus, knowing how HIF-1 works inside cancer cells is critical to manipulating its behavior and making its blood vessels more responsive to radiation, said Moeller.

It is already known that radiation boosts oxygen levels inside cancer cells. In the new study, Moeller demonstrated that the infusion of oxygen releases pent-up RNA, the genetic blueprint molecule, for HIF-1 protein which is bound up in tiny particles called stress granules. The oxygen disintegrates these stress granules and allows HIF-1 to be produced and to engage in production of growth factors.

Secondarily, the infusion of oxygen produces "reactive oxygen species" -- also known as oxygen free radicals -- inside cancer cells. Reactive oxygen species were also shown to boost HIF-1 production, the study showed.

"Tumors so desperately seek to protect themselves against radiation that they have two completely different mechanisms for boosting HIF-1 regulated gene production to protect their blood vessels," said Dewhirst. The team’s unexpected findings shift the accepted paradigm of how HIF-1 works inside cancer cells and provides major insight into how HIF-1 regulates angiogenesis after radiation therapy, he said.

"We’ve known that oxygen levels and blood vessel growth inside tumors are two major influences on how a tumor responds to radiation and chemotherapy," said Dewhirst. "Now we’ve shown for the first time that HIF-1 is a major target we could block in combination with radiation therapy or any other therapies that causes oxygen levels to rise after treatment."

Becky Levine | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7618

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>