Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists correct cystic fibrosis defect in mice with turmeric extract

23.04.2004


Scientists at The Hospital for Sick Children (Sick Kids) and Yale University School of Medicine have found that a compound in the spice turmeric corrects the cystic fibrosis defect in mice. This research is reported in the April 23, 2004 issue of the journal Science.

Cystic fibrosis (CF) is fatal genetic disease in which thick mucous clogs the lungs and the pancreas due to problems with the secretion of ions and fluid by cells of the airways and gastrointestinal tract. Normal secretion depends upon the function of a protein called CFTR (cystic fibrosis transmembrane conductance regulator), which was discovered at The Hospital for Sick Children in 1989. Mutations in the gene encoding CFTR are responsible for cystic fibrosis. In the most common form of cystic fibrosis, the CFTR protein is trapped inside the cell, and is therefore unable to carry out its proper function at the cell surface.

The laboratories of Drs. Marie Egan, Michael Caplan (both at Yale University School of Medicine), and Gergely Lukacs (Sick Kids) demonstrated in a mouse model that curcumin treatment can release the mutant CFTR protein from this inappropriate compartment inside the cell and allow it to reach its proper destination, where it is able to function. Furthermore, oral curcumin treatment was able to correct characteristic cystic fibrosis defects in a mouse model of the disease. Curcumin is a compound found in turmeric, and is what gives the spice its bright yellow colour and strong taste.



"We were able to prove at the cellular level what the Yale group observed in the mouse model of the disease," said Dr. Gergely Lukacs, a senior scientist in the Cell and Lung Biology Research Programs at Sick Kids and associate professor in the Department of Laboratory Medicine and Pathobiology at the University of Toronto. "After having received curcumin treatment, mice with the genetic defect that causes CF survived at a rate almost equal to normal mice. The CFTR protein also functioned normally in the cells lining the nose and rectum, which are areas of the body affected by cystic fibrosis."

Dr. Michael Caplan, the study’s senior author and professor in the Department of Cellular and Molecular Physiology at Yale University School of Medicine, said: "In the next phase of this research, we will work to determine precisely how curcumin is achieving these effects and to optimize its potential as a possible drug. Plans are underway for a human clinical trial of curcumin, which will be carried out under the auspices of Cystic Fibrosis Foundation Therapeutics, Inc."


Cystic Fibrosis Foundation Therapeutics, Inc. (CFFT), the nonprofit drug discovery and development affiliate of the Cystic Fibrosis Foundation (US), is working with Seer Pharmaceuticals on a Phase I clinical trial of curcumin to assess safety and dosage parameters in humans. The trial will be conducted through CFFT’s Therapeutics Network in four to six sites and will include approximately 25 patients.

This research was supported by the Canadian Cystic Fibrosis Foundation, the Canadian Institutes of Health Research, The Hospital for Sick Children Foundation, Alyward Family/Pitney Bowes Gift Fund, the US Cystic Fibrosis Foundation, the US National Institutes of Health, and a sponsored research grant from Seer Pharmaceuticals to Yale University.

The Hospital for Sick Children, affiliated with the University of Toronto, is Canada’s most research-intensive hospital and the largest centre dedicated to improving children’s health in the country. Its mission is to provide the best in family-centred, compassionate care, to lead in scientific and clinical advancement, and to prepare the next generation of leaders in child health. For more information, please visit www.sickkids.ca.

For more information, please contact:
Laura Greer, Public Affairs
The Hospital for Sick Children
(416) 813-5046
laura.greer@sickkids.ca

Chelsea Gay, Public Affairs
The Hospital for Sick Children
(416) 813-7654 ext. 1042
chelsea.gay@sickkids.ca

Laura Greer | EurekAlert!
Further information:
http://www.newsandevents.utoronto.ca/

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>