Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Received Truth Turned On End In Cancer Research

06.04.2004


It has long been the accepted view of cancer researchers that there is a difference between the mechanism behind the development of leukemias, on the one hand, and solid tumors like breast cancer, prostate cancer, gastrointestinal cancer, etc, on the other. A research team at the Section for Clinical Genetics at Lund University in Sweden is now claiming just the opposite: the same mechanism gives rise to all non-hereditary forms of cancer. These findings are being published in Nature Genetics.



A well-known mechanism for the development of cancer is that the chromosomes in a cell break apart and then recombine in an incorrect way. At the points of fissure, gene fragments are exposed that can recombine with so-called fusion genes, yielding fusion proteins. Leukemias--blood cancer--normally develop from cells that contain such fusion proteins. It is not known how this occurs in detail, but in some way the fusion proteins prompt formerly normal cells to transform into cancer cells. On the other hand, solid tumors, which make up the majority of all cancer cases, have been seen as developing as a result of certain cells losing the inhibiting mechanism in the form of so-called tumor suppressor genes that keep tumors from arising.

“This is no doubt correct in regard to hereditary cancer. But hereditary cancer accounts for only 5-10 percent of all cancer cases. We now maintain that all of the others have the same developmental mechanisms. In non-hereditary cancer forms it is the occurrence of fusion genes and not the lack of tumor suppressor genes that is essential,” says Professor Felix Mitelman.


Mitelman and his associates Bertil Johansson and Fredrik Mertens have gathered information about aberrant chromosomes in cancer for years. In 1997 Nature Genetics devoted an entire issue to the large material the Lund team had compiled, something that has only happened on one other occasion (when the human genome was presented). This material is now available as a large and constantly growing database in the so-called Cancer Genome Anatomy Project at the US National Cancer Institute, called the Mitelman Database of Chromosome Aberrations in Cancer.

In leukemia cells it is rather easy to find fusion genes and fusion proteins. For technical reasons, this is much more difficult in solid tumors.

“And if you haven’t seen them, you assume that they’re not there. But what has been lacking is appropriate methods of examination,” claims Felix Mitelman.

The research team has found that the number of fusion genes in solid tumors stands in the same proportion to the number of patient cases examined with leukemias. This shows that the same mechanisms are involved: the chance of this match being coincidental is less than 0.0001.

The good thing about this discovery is that it should lead to more effective treatment of the major cancer forms. For one type of leukemia, at any rate, there is a medicine that specifically targets the active fusion protein, and it is both effective and mild.

The downside is that there are probably a very great number of different fusion genes behind the major forms of cancer. Each transformation of genes is found in just a few patients.

“Small groups of patients are not of interest to pharmaceutical companies. On the other hand, it may be that several fusion proteins have common traits that make it possible to use the same drug to combat them,” hopes Felix Mitelman.

The fact that his research team have now turned on end an established truth does not mean that other ongoing research on the significance of genetic factors in the emergence of cancer has also been overturned, he emphasizes. Much of this research is about the long road from the first cancer cell to a full-blown tumor, and in this process tumor suppressor genes are probably of great importance. What the Lund team has done is to provide a revolutionary new picture of how this very first cancer cell arises.

Ingela Björck | alfa
Further information:
http://www.lu.se/info/pm/698_pressm.html

More articles from Health and Medicine:

nachricht Genetic differences between strains of Epstein-Barr virus can alter its activity
18.07.2019 | University of Sussex

nachricht Machine learning platform guides pancreatic cyst management in patients
18.07.2019 | American Association for the Advancement of Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>