Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New instrument to help fight prostate cancer

26.03.2004


With prostate cancer the second leading cause of cancer deaths in men in many industrialised countries, a new diagnostic instrument offers the possibility of rapid and early warning detection and screening of this major killer.



The three-year IST programme-funded PAMELA project aimed to develop a new analytical instrument that allows very fast blood analysis to determine the presence and amount of prostate specific antigen (PSA) present - important for the follow-up of prostate cancer.

The project’s integrated microbiosensor system incorporated established surface plasmon resonance (SPR) techniques, but significant improvements led to the development of the first commercial imaging instrument called the IBIS iSPR, which has been subsequently commercialised by consortium member Holland Biomaterials Group via its daughter company IBIS Technologies. In the analysis of an organism’s protein complement, proteomics, SPR technology serves as a sensitive instrument to identify and quantify specific binding events to a target molecule and acts as a micro-purification and recovery system to provide material for further analysis.


This new instrument "detects interactions with the binding of bio-molecules, such as proteins and DNA, with the sensors," explains Gerard Engbers, manager of technologies for the project. What makes the IBIS iSPR machine innovative is the number of interactions that can be simultaneously detected. Engbers points out that the number of simultaneous interactions that can be currently done with SPR machines is around 8, while the IBIS iSPR’s high optical resolution of 30 micrometre enables the simultaneous evaluation of more than 15,000 interactions on a single sensor. This gives a daily capacity of more than 2 million analyses per instrument.

The system operates with two monitors, one displaying the real time SPR-image of the sensor and the other for instrument control and presentation of the processed data. Fully dedicated software makes for ease of use, with the clear structure allowing basic operation without thick manuals.

The software provides full control over the interaction measurement, data acquisition, data analysis and also contains sensors modification routines including array spotting. Besides mass screening, the IBIS iSPR is a potential research instrument for every life science research laboratory, and can be used as an analysis instrument for combination with micro structured surfaces such as biochips and micro-arrays for genomic, proteomic and drug discovery applications.

Commercialisation efforts are off to a good start, says Engbers, with five units already sold by IBIS since the production line was launched three months ago. The forecast for this year is 10-15 systems, which cost approximately 96,000 euros each, and between 50 to 70 systems within five years. Engbers says IBIS will sell directly in Holland, Belgium and Germany, while the rest of Europe, Asia and the US will be handled by distributors, which the company is currently seeking.

"Currently the machines are being sold for research purposes - universities, academic hospitals and research labs for large pharmaceutical companies," he says, and for the longer term the company plans to develop dedicated instruments for use in hospitals for diagnostics.

Contact:
Gerhard Engbers
IBIS Technologies
PO Box 1242
7550 BE Hengelo
The Netherlands
Tel: +31 74 256 7045
Fax: +31 74 256 7047
Email: Gerard@ibis-spr.nl

Source: Based on information from PAMELA

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&BrowsingType=Features&ID=63223

More articles from Health and Medicine:

nachricht Finding new clues to brain cancer treatment
21.02.2020 | Case Western Reserve University

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>