Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson-Led Study Shows Needle-Free Transdermal System as Effective as IV Pain Pump for Post-Surgical Pain While Giving Patien

17.03.2004


A needle-free, self-contained fentanyl patient-controlled transdermal system (PCTS) is as effective for post-surgical pain management as the traditional intravenous pump (IV), while giving patients more mobility and freeing nurses to devote more time to patient care. The study led by researchers from Jefferson Medical College of Thomas Jefferson University, Philadelphia, appears in the March 17 issue of the Journal of the American Medical Association (JAMA).

The multi-center study conducted at more than 30 sites nationwide demonstrated that a button-activated, fentanyl system that delivers pain medication through the skin could eliminate the need for IVs for post-surgical pain relief. The study was led by Eugene Viscusi, M.D., director of the Acute Pain Management Service at Thomas Jefferson University Hospital, Philadelphia. The fentanyl transdermal system would also offer the advantage of a needle-free, pre-programmed medication system in a small, self-contained unit.

“This is a miracle of miniaturization,” said Dr. Viscusi, assistant professor of Anesthesiology, Jefferson Medical College of Thomas Jefferson University.



The system, known as E-TRANS fentanyl PCTS, is approximately the size of a credit card, self adherent to the skin, pre-programmed and needle free. It delivers pain medication across the skin with a low level electric current when activated by the patient with a small button on the surface of the device.

The fentanyl transdermal system could be used for patients with moderate to severe post-operative pain after most surgeries including joint replacement, prostate surgery or gynecological procedures, the Jefferson anesthesiologist said.

“Anyone who has ever had surgery remembers the discomfort of having IVs and needles,” Dr. Viscusi said. “This patch system has a huge potential advantage.”

The PCTS, placed on an inpatient’s upper arm or chest by adhesive on the back of the patch, transmits the pain medication through the skin at the push of a button, explained Dr. Viscusi. When the patient pushes the button for pain, PCTS delivers medication over 10 minutes. The system has a “lock out” feature so a patient cannot administer more pain medication than is prescribed for him. The system is replaced every 24 hours as needed.

Without any tubing or equipment to encumber a patient’s movement, the patient can freely move about to perform needed physical therapy, Dr. Viscusi said.

The PCTS could also be a boon to nurses as nursing staff would not have to spend time setting up an IV and the time consuming standard pain pump currently used. This could allow nurses to devote more time to patient care instead of technology, he said.

The fentanyl patch system studied is currently under review by the U.S. Food and Drug Administration (FDA) and was developed by Ortho-McNeil Pharmaceuticals, Inc. and the ALZA Corporation, both subsidiaries of Johnson and Johnson.

Jeffrey Baxt | TJUH
Further information:
http://www.jeffersonhospital.org/news/e3front.dll?durki=17592

More articles from Health and Medicine:

nachricht Study shows novel protein plays role in bacterial vaginosis
13.12.2019 | University of Arizona Health Sciences

nachricht Illinois team develops first of a kind in-vitro 3D neural tissue model
12.12.2019 | University of Illinois College of Engineering

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>