Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists use fractals to help Parkinson’s sufferers

02.02.2004


A new portable system for analyzing the walking patterns of people with Parkinson’s disease has been developed by researchers in the US and Japan. The system, described in the Institute of Physics publication Journal of Neural Engineering, will help doctors monitor the progress of the disease in patients and so tailor their therapy and drug regime more accurately than previously possible.



Parkinson’s disease is a progressive disorder of the central nervous system. Its symptoms include: uncontrollable trembling, difficulty walking, and postural problems that often lead to falls. These symptoms are usually controlled with dopamine agonist drugs. However, these can have a number of side-effects, such as jerking movements. It is also known that the body builds up a tolerance to the drug.

Understanding the nature and severity of symptoms for individual patients, which is reflected in their walking pattern, could help doctors improve a patient’s quality of life, by guiding their treatment more effectively, and so reduce side-effects.


Researchers have previously tried to quantify the problems suffered by Parkinson’s patients by studying their gait. Now, Masaki Sekine, Metin Akay, and Toshiyo Tamura, of the Department of Gerontechnology, National Institute for Longevity Sciences, in Aichi, Japan and Thayer School of Engineering, New Hampshire USA, working with their colleagues at the Fujimoto Hayasuzu Hospital, in Miy azaki, Japan, have devised a portable system based on a sensor placed on the patient’s body that measures movements in three dimensions. The readings from this sensor, known as a tri-axial accelerometer, are fed to a computer, together with measurements of the patients walking speed, and analysed using a fractal system.

Fractals are usually associated with irregular geometric objects that look the same no matter what scale they are viewed at: clouds, branching trees, rugged coastlines, rocky mountains, are all examples of fractals. The idea of a fractal can also be applied to irregular motion. For instance, a healthy heartbeat is now known not be so regular as we might think and follows a fractal pattern of movement instead. Scientists have suggested that fractals might also be used to model the irregular walking pattern of people with Parkinson’s disease.

The researchers used the fractal analysis to break down the body motion of healthy elderly subjects and patients with Parkinson’s disease into simpler component parts. The aim being to reveal the differences in irregularity and complexity of the way individuals in each group walk. The computer analysis of the data revealed the complexity, as determined by a fractal measure, of the walking patterns of each group. The fractal measure falls between 1 and 2, and the higher the fractal measure (close to 2) the more complex the body motion, or the lower the fractal measure (close to 1) the less complex the body motion.

The authors say that the fractal measure for Parkinson’s disease patients is about 1.48, or higher than that of healthy elderly subjects, whereas the healthy elderly subjects have a fractal measure nearer 1.3.

This confirms the fractal nature of the gait in Parkinson’s patients, says the team, and provides them with a quantitative means to measure the severity of walking symptoms.

The Journal of Neural Engineering was launched by the Institute of Physics this week and can be viewed online at: http://jne.iop.org.

David Reid | EurekAlert!
Further information:
http://jne.iop.org

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>