Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Direct link found between chronic inflammation, colon cancer

05.11.2003


Investigators in the A.B. Hancock Jr. Memorial Research Center at Vanderbilt have identified a type of DNA damage caused by chronic inflammation as a potential risk factor for colorectal cancer.



The findings, published this week in the early online edition of the website of the Proceedings of the National Academy of Science (www.pnas.org), shed more light on the role that inflammation might play in cancer and suggests that measurement of this type of DNA damage might be useful in assessment and management of a patient’s colorectal cancer risk.

"A number of studies have implicated chronic inflammation in the development of cancers, but the specific way that occurs is not clear," said Dr. Lawrence J. Marnett, Ph.D., director of the Hancock Research Center and the Vanderbilt Institute of Chemical Biology.


"These studies suggest a direct link between oxidative stress, like that seen in chronic inflammation, and genetic mutations that cause human disease."

The work reported in PNAS builds on years of research at Vanderbilt into how overproduction of the inflammation-causing enzyme cyclooxygenase-2 (COX-2) may contribute to cancer – and conversely, how aspirin-like drugs that block COX-2 might help treat or prevent cancer.

"When the body experiences oxidative stress, molecules called free radicals are produced, and these free radicals can damage cells – the cell membrane and the DNA," Marnett said.

The researchers examined a type of DNA damage caused by malondialdehye (MDA), a product of COX-2. The question they wanted to answer was whether the DNA damage would stop with the damaged cell or whether it would cause genetic abnormalities, or mutations, which would be replicated in future cell lines.

They built a DNA molecule that incorporated the MDA-caused damage and inserted that into mammalian kidney cells. After the cells divided, the DNA was recovered from the new cells and examined for mutations.

The researchers found that, indeed, the DNA damage had resulted in a specific type of genetic change called a "frameshift mutation." These mutations delete a small portion of DNA, effectively throwing off the "reading frame" through which the genes’ instructions are interpreted and resulting in a protein that doesn’t do what it is supposed to do.

Interestingly, these types of mutations are common in an inherited form of colon cancer, Hereditary Non-Polyposis Colon Cancer (HPNCC). This work suggests that these mutations, caused by inflammation and other oxidative stress, might also contribute to colorectal cancer.

Co-investigators in the research include Laurie A. VanderVeen, Muhammed F. Hashim and Yu Shyr, representing the Hancock Research Center, the VICB, the Vanderbilt-Ingram Cancer Center, the Vanderbilt Center for Molecular Toxicology and the Vanderbilt School of Medicine departments of Biochemistry and Preventive Medicine.

Cynthia Floyd Manley | EurekAlert!
Further information:
http://www.mc.vanderbilt.edu/reporter

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Simple and Fast Method for Radiolabelling Antibodies against Breast Cancer

23.04.2019 | Life Sciences

Quantum gas turns supersolid

23.04.2019 | Physics and Astronomy

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>