Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel therapeutic target identified in fight against Rheumatoid Arthritis

17.09.2003


A team of scientists, led by Toshihiro Nakajima at the St Marianna University School of Medicine in Japan, has identified an exciting therapeutic target that may lead to the development of new treatments for Rheumatoid Arthritis (RA).



As published in the latest edition of Genes and Development, the scientists report the discovery of ’synoviolin’, an enzyme that is found in abnormally high levels in diseased joints. High levels of synoviolin are found to cause an overgrowth of joint-destroying synovial cells, a key clinical feature of RA. By reducing levels of synoviolin, scientists hope to halt the proliferation of synovial cells and the devastating progression of RA.

RA is one of the most common joint diseases, affecting approximately 0.5-1.0% of the adult population worldwide. The progressive joint destruction, which mainly targets the small joints of the hands and feet, eventually results in severe movement disability. The clinical features of RA include chronic inflammation of the synovium, or lining of the joint, accompanied by the overgrowth of synovial cells, a condition known as synovial hyperplasia. This mass of synovial cells, or ’pannus’, eventually invades and destroys the cartilage and bone within the joint. Clearly, understanding the factors that regulate synovial hyperplasia are key to designing new therapies to treat RA.


Dr Nakajima and colleagues set out to identify proteins found in synovial cells from rheumatoid joints, with the hope of discovering novel pathogenic factors involved in RA. Using an antibody screening approach, the scientists identified synoviolin as an enzyme that is upregulated in synovial tissues from RA patients. To elucidate the function of synoviolin, the team engineered mice that produced an excess of synoviolin. Significantly, these mice developed spontaneous arthritic joint disease, suggesting that too much synoviolin is indeed an important factor in the development of RA. They also generated mice with half the normal amount of synoviolin. When these mice were treated with a protocol that induces arthritis in normal mice, the ’low-synoviolin’ mice were protected from the arthritis. This result firmly identified synoviolin as a key player in RA pathology.

The scientists went on uncover the cellular mechanism by which altered levels of synoviolin could influence joint pathology. By careful analysis of the engineered mice, they showed that synovial hyperplasia was prevented in the low-synoviolin mice because of increased synovial cell suicide or ’apoptosis’. Apoptosis is a vital protective mechanism against the overproduction of diseased or unwanted cells. On the other hand, synovial cell apoptosis was significantly impaired in mice overexpressing synoviolin, promoting synovial hypoplasia and ultimately, joint disease.

This research demonstrates the significance of synoviolin in regulating synovial hyperplasia and ultimately joint destruction in RA. It offers new insights into the etiology of RA and a novel target for innovative RA therapies. Future research will undoubtedly be focused on designing reagents to reduce the amount or inhibit the activity of synoviolin in diseased joints.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Health and Medicine:

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>