Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD researchers identify chromosome location for 2nd form of Joubert syndrome

04.09.2003


Physicians may be a step closer to pre-natal diagnosis of a rare genetic disorder called Joubert syndrome. This condition, present before birth, affects an area of the brain controlling balance and coordination.



New findings from the University of California, San Diego (UCSD) School of Medicine have identified chromosome 11 as a second site for a gene or genes that cause Joubert syndrome, a disorder that affects about 1 in 30,000 individuals. Prior to this study, chromosome 9 had been the only known site with gene mutations causing the disorder.

The new study, published online in the September issue of the American Journal of Human Genetics, focused on three Middle Eastern families whose relatives had inter-married and passed the genetic defect to several family members.


Characterized by absence or underdevelopment of a brain region called the cerebellar vermis, and by a malformed brain stem, Joubert syndrome affects individuals to varying degrees across the spectrum of motor and mental development. Its most common features include lack of muscle control and decreased muscle tone; an abnormal breathing pattern called hypernea, in which babies pant; abnormal eye and tongue movements; and mild or moderate retardation. The type of Joubert syndrome now traced to chromosome 11 also includes eye or kidney problems, in addition to the classical symptoms associated with the disorder.

“The hunt for genes for this syndrome has been extremely slow and none are currently known, due to the rarity of the syndrome,” said the study’s senior author, Joseph Gleeson, M.D., UCSD assistant professor of neurosciences. “The main problem in identifying genes has been the small number of patients appropriate for genetic analysis.”

This led Gleeson’s team to an intensive patient recruiting effort and a change in the way the analysis was being performed.

Joubert syndrome is inherited in an autosomal recessive manner, which means that both parents carry the mutant version of the gene, while showing no signs of the disease themselves. To increase their subject pool for research, the Gleeson team focused on the Middle East, where families are larger and inter-marriage between cousins is an accepted custom. Working with collaborators in Oman, the United Arab Emirates, Saudi Arabia, Jordan and Pakistan, the UCSD researchers obtained DNA samples from affected and unaffected individuals in 20 families.

Using sophisticated genetic screening tools, the researchers identified a common genetic region in seven children from three affected families who displayed the form of Joubert syndrome with eye and kidney problems. These patients included a northern Pakistani child of first cousins, who displayed visual impairment and kidney cysts in addition to the characteristic breathing abnormality and muscle coordination problem. Two of six children of first cousins from the United Arab Emirates, exhibited Joubert features such as brain malformations (as revealed on an MRI scan), impaired vision, jerky eye movements and a malformed retina. Three children from another United Arab Emirates family experienced panting respirations, balance problems, retinal dystrophy and moderate visual impairment.

The study’s authors noted that the variability of symptoms in the affected individuals suggests that there may be genetic modifiers that influence the disease severity and expression of symptoms.

Gleeson, who has studied Joubert syndrome for several years, noted “parents of affected children are just craving for information, to understand the basis for this disorder and something about the prognosis. The most heart wrenching thing is parents who are reluctant to get pregnant again because they have had a single child with this condition.”

He added that the possibility of developing a genetic screening test gives his group an additional incentive to discover the gene as soon as possible.

“We don’t yet know the exact genes involved; this is an incremental step,” Gleeson said. “But, we’re getting closer to providing the information these parents so desperately want.”

In addition to Gleeson, additional researchers include first-author Lesley C. Keeler, M.S., Sarah E. Marsh, M.S., Esther P. Leeflang, Ph.D., Neurogenetics Laboratory, UCSD Division of Pediatric Neurology; Christopher G. Woods, M.D., Molecular Medicine Unit and Yorkshire Clinical Genetics Service, St. James’ University Hospital, Leeds, United Kingdom; and Aithala Gururaj, Lihadh Al-Gazali, DCH, Laszlo Sctriha, M.D., Ph.D., Department of Pediatrics, United Emirates University, Al Ain, UAE.

The study was performed collaboratively with the Marshfield Center for Genetics in Wisconsin and funded by the March of Dimes.

Sue Pondrom | UCSD
Further information:
http://health.ucsd.edu/news/2003/09_03_Gleeson.html
http://gleesongenetics.ucsd.edu/
http://www.joubertsyndrome.org/index.htm

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>