Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New principle guides memory dynamics

22.08.2003


Weizmann Institute finding may lead to new treatments for psychological trauma



Is it possible to intentionally forget specific memories, without affecting other memories? Many would undoubtedly be happy to learn that unpleasant memories might be erased. This ability could be especially significant when it comes to the kind of traumatic memories that are debilitating to those experiencing them. It may well be that in the future, we will be able to wipe out, or at least dim, certain types of memories with controlled accuracy. A new fundamental rule governing the workings of the brain, recently discovered by a team of scientists in the Weizmann Institute of Science, headed by Prof. Yadin Dudai of the Neurobiology Department, constitutes a step towards reaching this goal.

Every memory that we acquire undergoes a "ripening" process (called consolidation) immediately after it is formed. In this process, it becomes impervious to outside stimulation or drugs that would obliterate it. Until recently, the accepted dogma was that for each separate item of memory, consolidation occurs just once, after which the time window that allows for "memory erasing" closes (usually about an hour or two after the memory is acquired).


However, evidence has lately come to light that a memory is open to disruption for a short period following each time this memory is recalled. If this is true, it means that it would be possible to recall a memory and, immediately after the act of remembering, to activate a "memory eraser" and wipe it out, even though years may have passed since the original memory was formed.

Research into the subject took place in leading labs around the world, but the results were indecisive, as in some cases it was found possible to erase old memories upon recall, while in others no evidence for this was found.

Prof. Dudai’s group have now identified a new principle guiding the activity of the brain’s memory systems, which sheds light on how memories are recalled and stabilized, and which can explain the puzzling discrepancies in the findings.

This principle delineates the conditions in which the recalled memory becomes re-sensitized to the activity of the "memory erasers." In order to understand the rule, think of the bits of information stored in our memories, each with many associations, some of which conflict with others. For instance, a certain food can bring up memories of taste – delicious or disagreeable; a person can be remembered in pleasant or unpleasant contexts, and so on.

When we next taste the food or see the person, all of the associated memories are called up in the blink of an eye, but in the end, only one of those memories will dictate our reaction (e.g. become dominant.) This memory will decide whether we will eat the food or reject it, or whether we will smile at our acquaintance or ignore him.

Prof. Dudai’s team found that only that recalled memory that won the competition for dominance was re-exposed to the time window of sensitivity to memory erasers, and it is this memory that must be consolidated once again before being reinstalled in the long-term memory.

In other words, the winner, in the appropriate circumstances, may lose all. Put succinctly, one can say the stability of the recalled memory is inversely correlated with its dominance. This discovery is likely to assist in the future in developing new methods of wiping out unwanted memories, and thus of treating some kinds of psychological trauma.

Research that deals with the physical basis of the processes and mechanisms of memory, especially those that involve chemical or other intervention, relies on animal subjects. Prof. Dudai and his team carried out their research with rats and fish, which are especially suited for this type of research. The rats learned to remember flavors; the fish learned to remember flashes of light, and in both instances, the animals were trained to associate them with conflicting memories. That is, the tastes were sometimes good and sometimes bad, and the light sometimes signaled danger and sometimes didn’t.

In both species, it was possible to show that the dominant memory – that which won out over other associated memories and determined subsequent behavior – was the only one that could be erased by giving the appropriate drug within a few minutes of the memory’s recall. The fact that the closer we get to the "basic hardware" of memory, the more similarities exist between different animals, including humans, paves the way to the possibility that certain drugs found to be effective in eliminating memories in animals will also work on humans. Studies on humans, however, are yet to be conducted.

The results of the study were published today in the scientific journal Science. Other than Prof. Dudai, participating in the study were research students Mark Eisenberg, Tali Kobilo, and Diego Berman.

Prof. Yadin Dudai’s research is supported by: Abe and Kathryn Selsky Foundation; Nella and Leon Benoziyo Center for Neurosciences; Lester Crown Brain Research Fund; Abramson Family Brain Research Program; Carl and Michaela Einhorn-Dominic Brain Research Institute; and Murray H. & Meyer Grodetsky Center for Research of Higher Brain Functions.

Prof. Dudai holds the Sara and Michael Sela Professorial Chair of Neurobiology.


###
The Weizmann Institute of Science, in Rehovot, Israel, is one of the world’s foremost centers of scientific research and graduate study. Its 2,500 scientists, students, technicians, and engineers pursue basic research in the quest for knowledge and the enhancement of humanity. New ways of fighting disease and hunger, protecting the environment, and harnessing alternative sources of energy are high priorities at Weizmann.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Health and Medicine:

nachricht Hepatitis: liver failure attributable to compromised blood supply
19.12.2018 | Technische Universität München

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New megalibrary approach proves useful for the rapid discovery of new materials

19.12.2018 | Materials Sciences

Artificial intelligence meets materials science

19.12.2018 | Materials Sciences

Gut microbiome regulates the intestinal immune system, researchers find

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>