Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Rochester scientists test new method to attack cancer

15.07.2003


Scientists have used a technique called RNA interference to impair cancer cells’ ability to produce a key enzyme called telomerase. The enzyme, present in most major types of cancer cells, gives cells the lethal ability to divide rampantly without dying. The laboratory experiments create an opportunity for researchers who are focusing on telomerase in a bid to develop a drug like none ever developed - one capable of killing 85 percent of cancers



The research, led by Peter T. Rowley, M.D., of the University of Rochester Medical Center, is being presented today at the annual meeting of the American Association for Cancer Research in Washington, D.C.

The enzyme telomerase produces telomeres, located at the ends of each chromosome, which protect the ends of chromosomes as cells divide. In a normal cell, the telomeres shorten each time the cell divides. After a cell divides 50 to 100 times, the telomeres shorten so much that they can no longer protect the chromosome, and the cell eventually dies.


Scientists believe that such cell death is normal, even healthy. But as a healthy cell turns cancerous, a genetic mutation triggers the production of telomerase, which restores the telomeres to normal length. The restored telomeres enable the cell to divide, unchecked, thousands of times instead of the usual 50 to 100. Over time, a few cancer cells can multiply into a golf-ball-sized tumor or spread to other parts of the body.

Since researchers discovered the important role telomerase plays in most cancers in the mid-1990s, much attention has been focused on finding a way to attack them. Several methods are in various stages of development.

The University of Rochester team used RNA interference to disrupt the production of telomerase in various cancer cells including colon, skin, cervical, and lung cancer. They crafted tiny snippets of double-stranded RNA, tailored to seek out the chemical message in the cell that conveys the instructions for making telomerase. Those snippets attracted enzymes and, together, they sought out and destroyed the cells’ chemical messages for making telomerase.

The technique reduced – but didn’t fully block – the production of telomerase. But with the cells’ supply of telomerase decreased, the telomeres at the ends of the chromosomes began to shorten. Over 75 days, the telomeres were shortened by as much as 85 percent. Rowley believes that if the experiment had been continued, the telomeres would have been shortened so much that all the cancer cells in the experiment would have died.

"If we can develop a therapy that prevents cancer cells from making telomerase, we may have a therapy that is effective against most cancers," said Rowley. "There are several hurdles we have to overcome before we can bring such a therapy to patients. Nonetheless, telomerase appears to be the most promising target we have in the search for an agent that is broadly effective against most forms of cancer."

Among the hurdles Rowley and other researchers are addressing is the possibility that RNA injected into the body could be broken down by enzymes before it reaches a patient’s cancer cells. Rowley plans a new series of experiments in mice to explore that possibility and devise a strategy to overcome it.


The research was funded by grants from the National Institutes of Health, the National Leukemia Research Association, and the Elsa U. Pardee Foundation.

Christopher DiFrancesco | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht Clear vision – project for safer laser treatment of floaters started
26.05.2020 | Laser Zentrum Hannover e.V.

nachricht Researchers develop high-performance cancer vaccine using novel microcapsules
25.05.2020 | Chinese Academy of Sciences Headquarters

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

NIST researchers boost microwave signal stability a hundredfold

26.05.2020 | Physics and Astronomy

Complex genetic regulation of flowering time

26.05.2020 | Life Sciences

'One-way' electronic devices enter the mainstream

26.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>