Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Treatment Boosts Cancer Vaccine

01.04.2003


The first clinical trials of a new type of cancer treatment that releases the “brakes” on immune cells indicate that this approach enhances attacks on tumors while sparing the body’s own tissue.

The results of the phase I clinical trials of cytotoxic T-lymphocyte-associated antigen 4 blockade therapy were published online on April 1, 2003, in the Early Edition of the Proceedings of the National Academy of Sciences. The researchers involved in the study included James Allison, a Howard Hughes Medical Institute investigator at the University of California, Berkeley, Glenn Dranoff, Steven Hodi and colleagues from the Dana-Farber Cancer Institute (DFCI), Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School.

Over the last decade, basic research in Allison’s laboratory and others has shown that the immune-regulating molecule, cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), inhibits activated immune system T cells, and prevents them from attacking the body’s own tissues. In studies in mice, Allison and his colleagues identified an antibody that blocks CTLA-4 and showed that it enhances the cancer-fighting activity of certain anti-cancer vaccines. Their research showed that blocking CTLA-4 maintains the response of T cells triggered by the vaccines to attack the cancer.



The success of the experiments in mice prompted the researchers to begin initial clinical studies to test whether they could elicit the same kind of response in humans. The phase I clinical trial — which aimed primarily at establishing the safety of the treatment — included nine patients with advanced cancers who had previously received cancer vaccines.

Three of the patients with metastatic melanoma and two with ovarian cancer had received a vaccine produced by extracting their own cancer cells, engineering the cells to produce the immune-stimulating molecule, granulocyte-macrophage-colony-stimulating factor (GM-CSF), and vaccinating the patients with those cells. This vaccine was developed by Dranoff and his colleagues at DFCI. Four other metastatic melanoma patients had received different vaccines based on immune-stimulating antigens specific to melanomas.

Although the five patients treated with the GM-CSF vaccine had not responded completely to that vaccine, the researchers found clear evidence that the anti-CTLA-4 antibody enhanced the immune system attack on their tumors. However, treatment with the antibodies did not enhance tumor killing in the four melanoma patients treated with the melanoma antigens.

“In the melanoma patients who responded to the anti-CTLA-4 treatment, Dr. Dranoff saw a skin rash, which is a positive reaction,” said Allison. “Such rashes are evidence that the T cells were attacking normal melanocytes in the skin, which is considered a good prognostic sign for people with melanoma. It indicates that the melanoma is being attacked as well. And while the tumor size did not necessarily immediately decrease in these patients, it was clear from pathology studies that tumor cells were being killed and being replaced by these inflammatory T cells.” According to Allison, the patients with ovarian cancer showed an increase in the bloodstream of a marker molecule indicating that the cancer cells were being killed.

Other clinical trials of the anti-CTLA-4 antibody are ongoing, said Allison, and the early results from all the trials make him optimistic that the treatment will prove highly useful. “In my opinion, what is most exciting is that there is no reason that this approach to tumor therapy is limited to any particular kind of cancer,” he said. “However, until we get more experience with the treatment, we should take extreme care before extending CTLA-4 blockade from cancers arising from tissues that are not absolutely essential.”

According to Allison, CTLA-4 blockade could boost anti-cancer immune response to aid several kinds of therapies. “We have preliminary data indicating that the treatment can synergize not only with immunotherapy, but also with radiation and chemotherapy,” he said. “Under circumstances where these treatments also activate the immune system, anti-CTLA-4 therapy could enhance those therapies.”

Allison emphasized that the anti-CTLA-4 antibodies only stimulate the immune system during a narrow window of treatment. “The beauty of this treatment is that the antibodies by themselves are benign. After they clear from the system, immune regulation returns to normal, and the patient is left with an amplified population of anti-tumor T cells.”

Jim Keeley | Howard Hughes Medical Institute
Further information:
http://www.hhmi.org/

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>