Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knee ’scaffold’ study offers new hope for injury victims

13.02.2003


Scientists from the University of Leicester are taking revolutionary research further with the potential to offer new hope for knee-injury victims.



They are following up international research that aims to improve knee cartilage repair techniques, termed ‘chrondrocyte implantation’. The procedure, developed in Sweden ten years ago, involves growing a patient’s knee cartilage cells in a laboratory, which are then implanted through open knee surgery. Recent exciting developments revolve around the materials or ‘scaffolds’ that the cells are grown on. The scaffold is inserted into the knee with the seeded cells growing on it, and disintegrates slowly once the knee’s cartilage cells have become established.

Dr Paul Jenkins from the Department of Chemistry at the University of Leicester, and orthopaedic surgeon Dr Mike Harding from the University’s Department of Orthopaedic Surgery at Glenfield Hospital are collaborating to find the perfect biodegradeable polymer scaffold.


Dr Jenkins said: “We are using a polymer that is based on hyaluronic acid, which has great potential, because it degrades to an acid that is naturally present as a lubricant in all of our joints. The scaffold must be adhesive so that it stays in place inside the knee until enzymes in the knee degrade it. Probably the best known scaffold material is the benzyl ester of hyaluronic acid is extremely sticky when the chrondrocyte cells are growing in it. Our aim is to prepare and test new derivatives of hyaluronic acid to produce even better biodegradable matrix materials.”

Mr Harding said: “Cartilage tissue is mostly composed of a stiff, spongy matrix material produced by the cartilage cells. A property of the scaffold should be that it promotes the configuration of cartilage cells into the matrix shape. We are currently exploring the growth of cells onto different polymer scaffolds.”

The research is in the experimental stages, and has not yet been clinically tested. If the material proves to be a successful cartilage scaffold, extensive trials will be needed to allow it to be clinically tested for its reliability as a general surgical procedure for damaged knees.

Ather Mirza | alfa

More articles from Health and Medicine:

nachricht Photoactive bacteria bait may help in fight against MRSA infections
12.10.2018 | Purdue University

nachricht 15 emerging technologies that could reduce global catastrophic biological risks
10.10.2018 | Johns Hopkins Center for Health Security

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

Physics: Not everything is where it seems to be

15.10.2018 | Physics and Astronomy

Microfluidic molecular exchanger helps control therapeutic cell manufacturing

15.10.2018 | Life Sciences

Link between Gut Flora and Multiple Sclerosis Discovered

15.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>