Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern scientists discover link between infections in mothers and brain injuries in babies

12.11.2002


Scientists at UT Southwestern Medical Center at Dallas have unraveled a mysterious connection – a potential mechanism that links brain injuries in infants to an infection in the mother’s placenta.



Their findings, published in the October edition of Pediatrics, could eventually lead to diagnostic tests for infants and mothers that could help prevent brain injury.

"The most critical issue in preventing and treating brain injury in infants is figuring out where the damage begins and what triggers it," said Dr. Jeffrey Perlman, professor of pediatrics at UT Southwestern and senior author of the study. "Our study opens a new pathway of understanding, but we still don’t have all the answers."


The study reveals the link between brain injury that occurs during the perinatal period - immediately before and after birth - and an infection in the mother’s placenta, called chorioamnionitis, which causes fever, inflammation, and abnormally high heart rates in the unborn child.

"Our study revealed the cause of brain injury in infants is not as simplistic as initial studies indicated," said Perlman, also professor of obstetrics and gynecology, and anesthesiology and pain management. "These findings bring us a small step closer to understanding how the brain is injured and could eventually lead to new strategies for controlling infection and, more importantly, for preventing brain injury."

Earlier studies have pointed to lack of oxygen as the primary cause for neonatal brain injuries, including cerebral palsy. Brain injury during the perinatal period is one of the most common causes of severe, long-term neurologic deficit in infants and children. Each year, one in 1,000 babies is born with brain injury in the United States - about 4,000 annually.

The UT Southwestern researchers studied 61 full-term infants who were admitted to the neonatal intensive care unit at Parkland Memorial Hospital over a two-year period between July 1999 and December 2001. They examined the babies’ umbilical cord blood for infection and also conducted extensive neurological examinations twice in the first 24 hours of life.

"We discovered a significant correlation between the increased elevation of inflammation in the mother’s placenta and a reduction in neurological function in infants," Perlman said. "This is the first time such a relationship has been established."

By measuring specific inflammation markers in cord blood at birth and then again at 12 to 14 hours of age, researchers discovered infants with higher levels were "floppy," or had poor muscle tone.

"The five infants with the highest level of biomarkers either had a brain dysfunction known as encephalopathy or seizures," said Dr. Octavio Ramilo, study collaborator and associate professor of pediatrics and microbiology.

Brain injuries in newborns usually result in weakness or paralysis, mental retardation and/or seizures. About half of the children suffering from brain injuries must use braces, walkers, or wheelchairs as they get older.

Other UT Southwestern contributors to the study were Dr. Abbot Laptook, professor of pediatrics, and obstetrics and gynecology; and Dr. Hasan Jafri, assistant professor of pediatrics. Dr. Lina Shalak, the principal author of the study, was a fellow in neonatal intensive care at UT Southwestern at the time of the study and is currently a pediatric resident at Children’s Medical Center of Dallas.

Barbara Bedrick | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Health and Medicine:

nachricht Scientists discover the basics of how pressure-sensing Piezo proteins work
22.08.2019 | Weill Cornell Medicine

nachricht Protein-transport discovery may help define new strategies for treating eye disease
22.08.2019 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>