Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Facing apparent resistance to antibiotics

30.07.2008
Researchers at the Hebrew University of Jerusalem have found new ways to kill dormant bacteria that have become seemingly resistant to antibiotics.

Although antibiotics are the most preferred treatment against bacterial infection and disease, it has become apparent that some diseases can't be treated simply by administering antibiotics.

Sub-populations of some bacteria can avoid the lethal antibiotics by decreasing their metabolism, remaining dormant for days and waiting for the right opportunity to strike again.

Researchers at the Hebrew University studied these dormant bacteria and found two new ways to kill them: either by subjecting the bacteria to a fresh dose of nutrients together with the antibiotic treatment, or by infecting those dormant bacteria with phages, namely viruses that attack bacteria. In both cases the survival of these dormant bacteria was significantly reduced.

Bio-physicist Dr. Nathalie Q. Balaban at the Hebrew University's Racah Institute of Physics, doctoral student Orit Gefen and master's student Sivan Pearl, recently reported their findings in Proceedings of the National Academy of Sciences USA and PLoS Biology.

Their research shows that sub-populations of the E. Coli bacteria persist antibiotic treatments by shutting down their activity. The activity was determined by following the production of fluorescent proteins in bacteria trapped on micro-chips.

The team discovered that protein production does occur in dormant bacteria, immediately after exiting the stationary phase. By exposing the entire bacteria population to antibiotics during this time-frame, the team significantly reduced the number of dormant bacteria that survived. These results offer a potentially new way to tackle dormant bacteria, which are the main reason for failure of antibiotic treatments in diseases such as tuberculosis, which often requires months or years of antibiotic treatment.

Also, the results challenge current views as to bacterial dormancy, and suggest an alternative model for the differentiation of normal bacterial cells into dormant ones.

Together with Prof. Oppenheim from the Hebrew University-Hadassah Medical School, the team also studied the interaction between dormant bacteria and phages. They tried to determine whether dormancy evolved as a protection mechanism against phage attack, thus allowing the bacteria to survive under stressful environments. The team showed that the existence of dormant bacteria provides advantage when the population is attacked by lysogenic phage (a phage that may reside inside the bacteria for some generations and only then multiply and attack). Nevertheless, dormancy provided no protection when the bacteria were attacked by lytic phage that reproduces and kills immediately.

According to Dr. Balaban, "These results might lead to new phage therapies for fighting infections that persist despite the antibiotics."

Rebecca Zeffert | alfa
Further information:
http://www.savion.huji.ac.il

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>