Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCF researchers discover a new protein family implicated in inflammatory diseases

11.03.2008
A University of Central Florida research team has discovered a new protein family that may play an important role in preventing inflammatory diseases such as arthritis, some forms of cancer and even heart disease.

The findings that in the future may aid the body’s defense system are published in the March 7 edition of the Journal of Biological Chemistry. The research is partially funded by the National Institutes of Health.

“What we found is a family of proteins that control macrophage activation,” researcher Mingui Fu said from a laboratory in the Burnett School of Biomedical Sciences at UCF.

Macrophages are the body’s self-cleaners. They live in the bloodstream and are called to action when bacteria or other foreign objects attack. Scientists have been studying what triggers them, but no one has come up with a step-by-step process yet. Once triggered, macrophages travel to the infection site and gobble up the invader, helping the body heal. The attack is manifested by inflammation at the infection site.

When everything works right, the inflammation goes away and the person’s health improves. But when macrophages go awry, they can cause more harm than good. Sometimes the macrophages mistake the body’s own organs for invaders and attack, and that can cause arthritis or some forms of cancer. Sometimes the cleaners fail to detect threats, such as malignant cancer cells, which then go unregulated and can turn into fatal tumors.

When Fu arrived at UCF in 2007, he teamed up with Pappachan Kolattukudy, the director of the Burnett School of Biomedical Sciences. Kolattukudy’s laboratory has been studying for two decades how a small protein called MCP, produced at the site of injury, infection or inflammation, attracts macrophages to the site to clean up. Last year his team published the discovery of a novel gene called MCPIP that is turned on by MCP. They showed that MCPIP is involved in the development of ischemic heart failure, the leading cause of death. This team has been exploring how this new gene works.

MCPIP turns out to be the first member of a small, newly discovered gene family called CCCH-Zinc fingure proteins. This family appears to switch the macrophages on and off. The researchers continue to study different aspects of the proteins because of the possibility that they will be critical in treating and curing inflammatory diseases.

Kolattukudy said the new protein holds a lot of promise, but more studies are needed.

“Because this novel protein has key roles to play in the major inflammatory diseases such as cardiovascular disease, cancer and obesity-induced type2 diabetes, it is a promising drug target,” Kolattukudy said. “We have a patent application filed on this protein for that purpose.”

Zenaida Gonzalez Kotala | EurekAlert!
Further information:
http://www.ucf.edu

More articles from Health and Medicine:

nachricht Discovery shows promise for treating Huntington's Disease
05.08.2020 | Ecole Polytechnique Fédérale de Lausanne

nachricht Carbon monoxide improves endurance performance
05.08.2020 | Universität Bayreuth

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Manifestation of quantum distance in flat band materials

05.08.2020 | Physics and Astronomy

Discovery shows promise for treating Huntington's Disease

05.08.2020 | Health and Medicine

Rock debris protects glaciers from climate change more than previously known

05.08.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>