Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parsley and other plants lend form to human stem cell scaffolds

21.03.2017

Borrowing from nature is an age-old theme in science. Form and function go hand-in-hand in the natural world and the structures created by plants and animals are only rarely improved on by humans.

Taking that lesson to heart, scientists at the University of Wisconsin-Madison are using the decellularized husks of plants such as parsley, vanilla and orchids to form three-dimensional scaffolds that can then be primed and seeded with human stem cells to optimize their growth in the lab dish and, ultimately, create novel biomedical implants.


Human fibroblast cells, common connective tissue cells, growing on decellularized parsley. A team of UW-Madison researchers from the lab of bioengineering Professor William Murphy is exploring the use of plants to make the three-dimensional structures that may one day be used to repair bone and tissue.

Credit: Gianluca Fontana/UW-Madison

Writing March 20 in the journal Advanced Healthcare Materials, a team led by William Murphy, a professor of biomedical engineering and co-director of the UW-Madison Stem Cell and Regenerative Medicine Center, describes the use of a variety of plants to create an efficient, inexpensive and scalable technology for making tiny structures that could one day be used to repair muscle, organs and bone using stem cells.

"Nature provides us with a tremendous reservoir of structures in plants," explains Gianluca Fontana, the lead author of the new study and a UW-Madison postdoctoral fellow. "You can pick the structure you want."

The new technology capitalizes on the elegant, efficient structural qualities of plants: strength, rigidity, porosity, low mass and, importantly, surface area. It may help overcome the limitations of current methods such as 3-D printing and injection molding to create feedstock structures for biomedical applications.

"Plants are really special materials as they have a very high surface area to volume ratio, and their pore structure is uniquely well-designed for fluid transport," says Murphy.

The UW-Madison team collaborated with Madison's Olbrich Botanical Gardens and curator John Wirth to identify plant species that could potentially be transformed into the miniature structures useful for biomedical applications. In addition to plants like parsley and orchid, Wirth and colleagues at Olbrich identified bamboo, elephant ear plants and wasabi as plants whose structural qualities may be amenable to creating scaffolds with properties and shapes useful in bioengineering. The team also collected plants such as the wetland-loving bulrush from the UW Arboretum.

"The vast diversity in the plant kingdom provides virtually any size and shape of interest," notes Murphy, who was prompted to explore the plant world after gazing from his office window onto UW-Madison's Lakeshore Nature Preserve. "It really seemed obvious. Plants are extraordinarily good at cultivating new tissues and organs, and there are thousands of different plant species readily available. They represent a tremendous feedstock of new materials for tissue engineering applications."

The new approach to making scaffolds for tissue engineering depends on cellulose, the primary constituent of the cell walls of green plants. The Wisconsin team found that stripping away all of the other cells that make up the plant, and treating the leftover husks of cellulose with chemicals, entices human stem cells such as fibroblasts -- common connective tissue cells generated from stem cells -- to attach to and grow on the miniature structures.

Stem cells seeded into the scaffolds, according to Fontana, tend to align themselves along the pattern of the scaffold's structure. "Stem cells are sensitive to topography. It influences how cells grow and how well they grow."

That ability to align cells according to the structure of the plant scaffold, adds Murphy, suggests it might be possible to use the materials to control structure and alignment of developing human tissues, a feature critical for nerve and muscle tissues, which require alignment and patterning for their function.

Another critical advantage of the plant scaffolds, notes Murphy, is the apparent ease with which they can be made and manipulated. "They are quite pliable. They can be easily cut, fashioned, rolled or stacked to form a range of different sizes and shapes."

They are also renewable, easy to mass produce and inexpensive.

The scaffolds have yet to be tested in an animal model, but plans are underway to conduct such studies in the near future.

"Toxicity is unlikely, but there is potential for immune responses if these plant scaffolds are implanted into a mammal," says Murphy. "Significant immune responses are less likely in our approach because the plant cells are removed from the scaffolds."

###

The Wisconsin study was supported by grants from the Environmental Protection Agency, the National Institutes of Health and the National Science Foundation.

Terry Devitt, (608) 262-8282, trdevitt@wisc.edu

DOWNLOAD PHOTOS: https://uwmadison.box.com/v/stem-cell-scaffold

Media Contact

William Murphy
wlmurphy@ortho.wisc.edu
608-265-9978

 @UWMadScience

http://www.wisc.edu 

William Murphy | EurekAlert!

More articles from Health and Medicine:

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>