Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overlooked cell key player in preventing age-related vision loss

07.03.2018

Tree-shaped retinal cells called Müller glia may provide a new therapeutic target for treating degenerative eye diseases

Duke Researchers have pinpointed a new therapeutic target for macular degeneration, an eye disease that affects over 10 million Americans and is the leading cause of blindness in adults over 60.


Retinas are built of a stack of neurons that transmit signals from the photoreceptors to the brain. These neurons and the synapses between them are supported by long, tree-shaped cells called Müller glia (in green), which may provide a new therapeutic target for treating degenerative eye diseases.

Credit: Sehwon Koh, Duke University

Clinical trials have shown that injection of human umbilical stem cells, or hUTC, into the retina helps preserve and restore vision in macular degeneration patients. However, the underlying mechanisms behind the therapy remain unknown.

The findings, published online in the Journal of Neuroscience, show that hUTC treatment preserves the function of a retinal cell called the Müller glia in rats with degenerative vision loss.

"This provides strong evidence that Müller glia are important therapeutic targets for treating degenerative eye diseases," said Sehwon Koh, Ph.D., who is the lead author of this paper and a postdoctoral fellow in the laboratory of Cagla Eroglu, Ph.D., an associate professor of cell biology and neurobiology at the Duke University Medical Center. This research was carried out in collaboration with Janssen Research & Development, LLC. 

Retinas are built of a stack of different types of neurons, each connected by synapses that transmit signals from photoreceptors to the brain. Long, tree-shaped cells called Müller glia span the entire thickness of the retina, wrapping their branches around neurons to support their health and encourage the development of synapses.

Macular degeneration involves both the death of photoreceptor neurons -- the classic rods and cones that capture light and convert it into an electric signal -- and the loss of neural synapses within the retina.

Though age is the biggest risk factor for macular degeneration, genetics, race and lifestyle choices such as smoking also play a role.

The Duke scientists first examined the retinas of young rats that were genetically predisposed to an eye disease which causes progressive blindness similar to a disorder called retinitis pigmentosa in humans. They found that the neural synapses within the retina began to deteriorate even before the photoreceptors started to die.

As the number of neural synapses declined, the Müller glia also became sickly, pulling their branches away from neurons and dividing haphazardly.

When the researchers injected human umbilical stem cells behind the retinas of these rats, the Müller glia remained healthy, as did the neural synapses. The treatment succeeded in preserving the majority of the rats' vision and stopped the photoreceptors from dying.

"Previous studies primarily focused on neurons and the retinal pigment epithelium cells as culprits in degeneration," said Eroglu, who is also a member of the Duke Institute for Brain Sciences (DIBS). "Müller glia were not considered an important player in the early stages of retinal degeneration and were not thought to be an important target for hUTC treatment, but our findings suggested otherwise."

To test whether the Müller glia were truly the key players in the synaptic loss, the team used a gene-editing technique to remove a specific gene from Müller glia cells. Deleting this gene is known to cause retinal degeneration, but its function in Müller glia has never been explored.

Without this gene, the Müller glia were defective and bore striking similarities to those in rats that had developed retinitis pigmentosa. In addition, the neural connections within retinas of these rats were malformed, mimicking the problems seen in early stages of retinal degeneration.

"What we are seeing here is that Müller glia are important players in retinal health," Eroglu said. "They are impaired in disease, and effective cellular therapies should target not only other retinal cell types but these cells as well."

###

This research was supported by grants from the National Institutes of Health (NEI 1F3228, EY027997 and NIA 2T32AG000029), the Duke University Chancellor's Discovery Award, Kahn Neurotechnology Development grant and Regeneration Next Initiative Postdoctoral Fellowship. Parts of the work were performed under sponsored research agreements between Duke University and Janssen R&D.

CITATION: "Subretinal Human Umbilical Tissue-Derived Cell Transplantation Preserves Retinal Synaptic Connectivity and Attenuates Mü?ller Glial Reactivity," Sehwon Koh, William J. Chen, Nadine S. Dejneka, Ian R. Harris, Bin Lu, Sergey Girman, Joshua Saylor, Shaomei Wang and Cagla Eroglu. Journal of Neuroscience, EPub Feb. 5, 2018. DOI: 10.1523/JNEUROSCI.1532-17.2018

Media Contact

Kara Manke
kara.manke@duke.edu
919-681-8064

 @DukeU

http://www.duke.edu 

Kara Manke | EurekAlert!

More articles from Health and Medicine:

nachricht New 3D cultured cells mimic the progress of NASH
02.04.2020 | Tokyo University of Agriculture and Technology

nachricht Geneticists are bringing personal medicine closer to recently admixed individuals
02.04.2020 | Estonian Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

 
Latest News

TU Dresden chemists develop noble metal aerogels for electrochemical hydrogen production and other applications

06.04.2020 | Life Sciences

Lade-PV Project Begins: Vehicle-integrated PV for Electrical Commercial Vehicles

06.04.2020 | Power and Electrical Engineering

Lack of Knowledge and Uncertainty about Algorithms in Online Services

06.04.2020 | Social Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>