Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIH scientists find earliest known evidence of 1918 influenza pandemic

20.09.2011
Examination of lung tissue and other autopsy material from 68 American soldiers who died of respiratory infections in 1918 has revealed that the influenza virus that eventually killed 50 million people worldwide was circulating in the United States at least four months before the 1918 influenza reached pandemic levels that fall.

The study, using tissues preserved since 1918, was led by Jeffery K. Taubenberger, M.D., Ph.D., of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health. The researchers found proteins and genetic material from the 1918 influenza virus in specimens from 37 of the soldiers, including four who died between May and August 1918, months before the pandemic peaked. These four cases are the earliest 1918 pandemic influenza cases they know to be documented anywhere in the world, the scientists say.

The clinical disease and tissue damage seen in the pre-pandemic cases were indistinguishable from those evident in cases that occurred during the height of the pandemic. This suggests, says Dr. Taubenberger, that over the course of the pandemic, the virus did not undergo a dramatic change that could explain the unusually high mortality it ultimately caused.

In the current study, the autopsy materials showed that the virus replicated not only in the upper respiratory tract but also the lower respiratory tract, in a pattern very similar to that of the 2009 pandemic influenza virus. The team also found evidence that two virus variants were circulating in 1918. In one, a key viral protein called hemagglutinin bound well to receptors on human respiratory cells, while the hemagglutinin from the other variant bound less efficiently. Despite this difference in binding ability, both viruses caused similar disease symptoms and replicated in a similar pattern within cells lining the respiratory tract, suggesting that differences in hemagglutinin binding capacity alone do not fully explain the unusually high mortality seen in the 1918 pandemic.

Bacterial co-infections were found in all 68 cases studied, the researchers noted. The role played by bacterial co-infections, such as bacterial pneumonia, in contributing to deaths in the 1918 pandemic was previously described by Dr. Taubenberger and his colleagues in a 2008 study. According to the study authors, the new data underscore the crucial role that bacterial infections can play in conjunction with any influenza virus, whether historic or future, and the need for public health officials to prepare to prevent, detect and treat bacterial co-infections during future influenza outbreaks.

ARTICLE: Z-M Sheng et al. Autopsy series of 68 cases dying before and during the 1918 influenza pandemic peak. Proceedings of the National Academies of Sciences DOI: 10.1073/pnas.1111179108 (2011).

Study co-authors Jeffery K. Taubenberger, M.D., Ph.D., Laboratory of Infectious Diseases, NIAID, and David M. Morens, M.D., Office of the Director, NIAID, are available to provide comment.

CONTACT: To schedule interviews, please contact Anne A. Oplinger, (301) 402-1663, aoplinger@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

Anne A. Oplinger | EurekAlert!
Further information:
http://www.nih.gov

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>