Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New theranostic strategy developed for precise tumor diagnosis and therapy

26.06.2018

Intelligent nanomaterials bridge the conventional concepts of 'molecule' and 'nano' in the bioimaging field

A novel, intelligent theranostic agent for precise tumor diagnosis and therapy has been developed that remains as small molecules while circulating in the bloodstream, can then self-assemble into larger nanostructures in the tumor, and be activated by the tumor microenvironment for therapy guided by photoacoustic imaging. The research was presented at the 2018 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI).


An intelligent theranostic agent of molybdenum-based polyoxometalate clusters (denoted as Ox-POM) was developed to respond to the tumor microenvironment for precise photoacoustic imaging of tumor and photothermal therapy under near-infrared irradiation.

Credit: D. Ni and W. Cai et al., Department of Radiology, University of Wisconsin-Madison, Madison, Wisc.

Usage Restrictions: Use at least title and credit; best with caption included

"Although various types of imaging agents have been developed for photoacoustic (PA) imaging, relatively few imaging agents exhibit high selectivity to the tumor microenvironment for on-demand PA imaging and therapy," Dalong Ni, PhD, a postdoctoral scholar in the Molecular Imaging and Nanotechnology Laboratory at the University of Wisconsin-Madison (Website: http://mi.wisc.edu; PI: Weibo Cai, PhD), explains.

"In this study, an intelligent theranostic agent of molybdenum-based polyoxometalate clusters (denoted as Ox-POM) was designed. These clusters work like an intelligent "nano-robot" in vivo, first searching the tumor area (which can be noninvasively images with PA imaging) and then killing tumor cells (photothermal therapy after it self-assembled in the tumor microenvironment)."

Ni points out, "Unlike traditional chemotherapy, the designed intelligent Ox-POM clusters, obtained from an easy, fast, and large-scale synthesis process, will only cause damage in tumor areas but not to the normal tissues and organs. Importantly, like most clinical imaging agents, these nanoclusters are mainly excreted through the kidneys, making them highly biocompatible and reducing the potential toxic effects on patients."

Tumor-bearing mice were tested with this novel system of redox-activated PA imaging-guided photothermal therapy (PTT). Redox is short for reduction-oxidation reaction. In this study, the ultra-small Ox-POM clusters accumulate in the tumor and are reduced in the tumor microenvironment. They then get protonated and self-assemble into much larger nanoparticles that are near-infrared (NIR) absorptive. Systematic in vitro and in vivo experiments were performed to evaluate their bioresponsive and theranostic capability.

Results from positron emission tomography (PET) imaging with zirconium-89-labeled Ox-POM showed these clusters could escape from recognition by the liver and spleen and were mainly excreted through the kidneys, which is highly desirable for reducing potential toxic effects. Studies in the tumor-bearing mice showed that the PA signal was detected in the tumors as early as one hour post-injection.

Under laser irradiation, the temperature of the tumor rapidly increased, reaching above 40 °C in 30 seconds and reaching 52 °C in five minutes; the tumor growth was eliminated without subsequent recurrence for a prolonged period of up to 2 months, whereas the control groups demonstrated rapid tumor growth.

Ni states, "As a proof-of-concept, our findings explore a new strategy for precise tumor diagnosis and therapy, which is also expected to establish a new class of theranostic agents based on clusters, bridging the conventional concepts of "molecule" and "nano" in the bioimaging field."

He adds, "These are exciting smart nanomaterials (target and/or respond to cancer and efficiently clear from the body) for potential clinical translation. On-demand tumor diagnosis and therapy triggered by physiological microenvironment characteristics of tumors can simultaneously reduce the damage of anticancer agents to normal organs/tissues and improve therapeutic efficacy."

###

Abstract 188: "Redox-Activated Photoacoustic Imaging-Guided Photothermal Therapy with Bioresponsive Polyoxometalate Cluster," Dalong NI, PhD, Dawei Jiang, PhD, Emily B. Ehlerding, Todd E. Barnhart, PhD, and Weibo Cai, PhD, University of Wisconsin - Madison, Madison, WI; Bo Yu, PhD, University of Wisconsin - Madison, Madison, WI, and School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China; and Weijun Wei, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China. SNMMI 2018 Annual Meeting, June 23-26, 2018, Philadelphia.

Link to Abstract

Please visit the SNMMI Media Center for more information about molecular imaging and personalized medicine. To schedule an interview with the researchers, please contact Laurie Callahan at 703-652-6773 or lcallahan@snmmi.org. 2018 SNMMI Annual Meeting abstracts can be found online at http://jnm.snmjournals.org/content/59/supplement_1. Current and past issues of The Journal of Nuclear Medicine are online at http://jnm.snmjournals.org.

ABOUT THE SOCIETY OF NUCLEAR MEDICINE AND MOLECULAR IMAGING

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to advancing nuclear medicine and molecular imaging, vital elements of precision medicine that allow diagnosis and treatment to be tailored to individual patients in order to achieve the best possible outcomes.

SNMMI's more than 16,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snmmi.org.

Laurie F Callahan | EurekAlert!

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>