Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle loss in elderly linked to blood vessels' failure to dilate

20.05.2010
Post-meal blood vessel expansion naturally occurs in young, not old, and restoration through drug therapy could dramatically improve strength and health of elders

Why do people become physically weaker as they age? And is there any way to slow, stop, or even reverse this process, breaking the link between increasing age and frailty?

In a paper published online this Wednesday in the Journal of Clinical Endocrinology & Metabolism, University of Texas Medical Branch at Galveston researchers present evidence that answers to both those questions can be found in the way the network of blood vessels that threads through muscles responds to the hormone insulin.

Normally, these tiny tubes are closed, but when a young person eats a meal and insulin is released into the bloodstream, they open wide to allow nutrients to reach muscle cells. In elderly people, however, insulin has no such "vasodilating" effect.

"We were unsure as to whether decreased vasodilation was just one of the side effects of aging or was one of the main causes of the reduction in muscle protein synthesis in elderly people, because when nutrients and insulin get into muscle fibers, they also turn on lots of intracellular signals linked to muscle growth," said UTMB's Dr. Elena Volpi, senior author of the paper. "This research really demonstrates that vasodilation is a necessary mechanism for insulin to stimulate muscle protein synthesis."

Volpi and her collaborators reached this conclusion after an experiment in which they infused an amount of insulin equivalent to that generated by the body in response to a single meal into the thigh muscles of two sets of young volunteers. One group had been given a drug that blocked vasodilation, while the other was allowed to respond normally. Measurements of muscle protein synthesis levels where made using chemical tracers, while biopsies yielded data on specific biochemical pathways linked to muscle growth.

"We found that by blocking vasodilation, we reproduced in young people the entire response that we see in older persons — a blunting of muscle protein response and a lack of net muscle growth. In other words, from a muscle standpoint, we made young people look 50 years older," Volpi said.

Such results point the way to what could be a powerful new therapy for age-related frailty and the health and quality-of-life problems that come with it.

"Eventually, if we can improve muscle growth in response to feeding in old people by improving blood flow, then we're going to have a major tool to reduce muscle loss with aging, which by itself is associated with reduction in physical functioning and increased risk of disability," Volpi said.

Other authors of the paper ("Insulin Stimulates Human Skeletal Muscle Protein Synthesis via an Indirect Mechanism Involving Endothelial-Dependent Vasodilation and Mammalian Target of Rapamycin Complex 1 Signaling") were lead author and postdoctoral fellow Kyle Timmerman, medical student Jessica Lee, assistant professor Hans Dreyer, research scientist Shaheen Dhanani, graduate students Erin Glynn and Christopher Fry, assistant professor Micah Drummond, associate professor Melinda Sheffield Moore, and professor Blake Rasmussen. Specialized metabolic studies were conducted by the staff of the UTMB Clinical Research Center, part of the university's Institute for Translational Sciences. The National Institute on Aging, the UTMB Claude D. Pepper Center Older Americans Independence Center, the National Institute of Child Health and Human Development and the UTMB Clinical Translational Sciences Award supported this study.

ABOUT UTMB: Established in 1891, Texas' first academic health center comprises four health sciences schools, three institutes for advanced study, a research enterprise that includes one of only two national laboratories dedicated to the safe study of infectious threats to human health, and a health system offering a full range of primary and specialized medical services throughout Galveston County and the Texas Gulf Coast region. UTMB is a component of the University of Texas System.

The University of Texas Medical Branch at Galveston
Public Affairs Office
301 University Boulevard, Suite 3.102
Galveston, Texas 77555-0144

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>