Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monocytes have many faces

20.12.2017

When the immune system mobilizes its troops, antigen-presenting cells play an important role. They can emerge from white blood cells (monocytes) that circulate in the blood. An international research team under the leadership of the University of Bonn has now taken a closer look at these important helpers. The research revealed that the monocyte-derived cells are not identical descendants, but rather a very diverse mixture. This finding is important for the further development of tailor-made immunotherapies for combating tumor cells. The scientists now present their findings in the renowned journal "Immunity".

For more than two decades, monocyte-derived dendritic cells (moDCs) have been obtained from patients' blood for immunotherapy to treat various cancers, for example melanoma, lung or colon cancer. It was assumed that these therapeutically used cells are identical to dendritic cells. Dendritic cells have become known as the most potent antigen-presenting cells. They recognize foreign structures of invaders, pick them up and present them to other immune cells to strengthen the targeted defense.


In the lab (from left): Dr. Branko Cirovic, Jil Sander, Prof. Dr. Joachim Schultze and Dr. Andreas Schlitzer at the LIMES-Institute of University of Bonn.

© Photo: Barbara Frommann/Uni Bonn

Immunotherapy is effective only for a small proportion of patients

“Only a small proportion of patients respond to therapy with moDCs, whilst very little effect is seen in the vast majority of patients”, says Dr. Andreas Schlitzer, Emmy-Noether-Group Leader at the Life and Medical Sciences (LIMES) Institute of the University of Bonn.

Using the latest high-tech methods, Prof. Dr. Joachim Schultze and Dr. Schlitzer together with their colleagues from the LIMES Institute, the Institute of Innate Immunity of University Hospital Bonn, the cluster of excellence ImmunoSensation at University of Bonn, from Stanford University (USA) and the Singapore Immunology Network (Singapore) researched the properties of these special cells.

Using human blood, the scientists extracted monocytes which they transformed into a large variety of antigen-presenting cells and analyzed using state-of-the-art methods. What is the activity of different genes of different moDCs? How is their metabolism? Which messengers and stimulants do they respond to? It became clear that there is a huge variety of moDCs.

“Using state-of-the-art computer-assisted models, we were able to show that moDCs differ from dendritic cells and present a mixture of cells with very diverse properties and functions”, explains lead author Jil Sander from the LIMES Institute. “MoDCs have an extraordinarily large plasticity, enabling them to tailor their response to pathogens, tumors or endogenous danger signals. This ability is fine-tuned by specific gene regulation”, adds second lead author Dr. Susanne V. Schmidt from the Institute of Innate Immunity of University Hospital Bonn. They most closely resemble immune cells that occur in inflammation.

The wide variety of different moDCs could explain why moDCs activate the immune system against the tumor cells only in some patients. “Our results are the basis for tailoring moDCs for the patients, thereby significantly improving cancer immunotherapy”, says Prof. Schultze from the LIMES Institute.

Time aspect is crucial for cell differentiation

Additionally, the research team achieved important results for basic research. “The time aspect had been largely ignored so far in the differentiation of monocytes”, says Dr. Schlitzer. Depending on how long the substance, for example interleukin 4, acted on the cells, the moDCs could be very different. The researchers agree that the potential of monocyte-derived dendritic cells is underestimated.

Publication: Cellular differentiation of human monocytes is regulated by time-dependent IL4 signalling and NCOR2, Immunity, DOI: 10.1016/j.immuni.2017.11.024

Media contact:

Dr. Andreas Schlitzer
LIMES-Institute
University of Bonn
Tel. +49(0)228/7362847
E-mail: andreas.schlitzer@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>