Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milestone in MS research: neuroimmunologists find cause of deficit in body’s own immune system

13.05.2016

Scientists from the universities in Münster and Munich have discovered what precisely goes wrong in the body in the case of multiple sclerosis (MS). At the same time the neuroscientists were able to demonstrate that for MS, which occurs in bouts, there is a therapy which is tailor-made to eliminate the deficit.

The researchers involved are talking of a milestone: neuroimmunologists and neuropathologists from the universities in Münster and Munich have discovered what precisely goes wrong in the body in the case of multiple sclerosis (MS). Cells in the innate immune system – the natural killer cells (NK cells) – no longer fulfil their function with MS.


Dr. Catharina Groß, Prof. Heinz Wiendl and Dr. Andreas Schulte-Mecklenbeck at work in the laboratory

Photo: FZ

They cannot sufficiently keep in check the effector T cells, which are the cells that cause damage in the body in the case of MS. At the same time the neuroscientists were able to demonstrate that for MS, which occurs in bouts, there is a therapy which is tailor-made to eliminate the deficit – a blockade of the interleukin-2 receptor.

The drug used for this – Daclizumab – has just been recommended for approval by the European Medicines Agency EMA, so patients will soon be able to use it in their therapy. The effects of the new drug have already been demonstrated in clinical studies, in which the Münster neuroimmunologists were also involved. Their results, achieved in Collaborative Research Centre TR128 (“Multiple Sclerosis”), can be seen in the latest issue of the prestigious journal “Proceedings of the National Academy of Sciences”.

A healthy immune system functions like an efficient police check on traffic: anyone found speeding – in this case, autoreactive T lymphocytes – are singled out and punished. On the other hand, just the threat of a traffic fine is sufficient to prevent the majority of drivers from speeding.

This is how people posing a potential threat to others are held in check. In the case of multiple sclerosis, however, this check does not function properly. Autoreactive T cells cross the blood-brain barrier unhindered and pass into the brain, where they attack the nerve cells’ protective layer. Using the traffic image again: anyone speeding is not stopped and they cause serious accidents.

Project leaders Dr. Catharina Groß and Prof. Heinz Wiendl from the Department of General Neurology at Münster University Hospital demonstrated that cells from the body’s innate immune system – the NK cells – help decisively to keep dangerous autoreactive cells in check in healthy people. The researchers were even able to decipher the precise molecular mechanism which NK cells use to protect the immune system.

They also revealed that, in the case of MS, not only do the monitoring mechanisms of the immune system fail, but the harmful T cells also use tricks to evade any control on the part of the natural killer cells – just as if traffic offenders were to remove the number plates from their car so as not to be identified.

And one more thing the scientists showed was that there is a promising drug – Daclizumab, a monoclonal antibody – to counteract the interleukin-2 receptor and strengthen the immune-regulatory function of the NK cells. Support, so to speak, in monitoring the traffic. “We were able to demonstrate that Daclizumab not only reinforces the positive immune-regulatory function of the natural killer cells,“ says Dr. Groß, whose work was supported with funding from the German Research Foundation (DFG).

Together with her colleagues, one of the things she did was to analyse blood from patients with multiple sclerosis who had already been treated with the new substance. This substance, she says, leads to the harmful T cells again becoming more receptive to regulation by the NK cells. The European Medicines Agency EMA recommended at the end of April that the substance be approved after successful Phase II and Phase III studies on MS patients.

Research successes like this one need not only the expertise of neuroimmunologists in Münster, as Prof. Heinz Wiendl, who heads both the project and a working group, stresses. What progressed the project in particular was the collaboration with neuroscientists Prof. Reinhard Hohlfeld and Dr. Klaus Dornmair from Munich University and Prof. Tanja Kuhlmann from the Department of Neuropathology at Münster University. All these people work together as part of Collaborative Research Centre TR128 (“Multiple Sclerosis”), funded by the German Research Foundation. The Centre’s translational platform provided the blood and cerebrospinal fluid samples from patients which required for analysis.


Publication:

Gross CC, Schulte-Mecklenbeck A, Rünzi A, Kuhlmann T, Posevitz-Fejfár A, Schwab N, Schneider-Hohendorf T, Herich A, Held K, KonjeviM, Hartwig M, Dornmair K, Hohlfeld R, Ziemssen T, Klotz L, Meuth SG, Wiendl H, Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation. PNAS 2016; published ahead of print May 9, 2016, doi:10.1073/pnas.1524924113

Contact:

Dr. Thomas Bauer
Universitätsklinikum Münster
GB Unternehmenskommunikation
Domagkstraße 5
48149 Münster
Tel. 0251-83-58937
mobil: 0171-4948979

Weitere Informationen:

http://www.pnas.org/content/early/2016/05/04/1524924113.abstract?sid=50ecc138-88... Original publication (PNAS)

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>