Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigators may unlock mystery of how staph cells dodge the body's immune system

22.09.2017

Patients can be infected again and again, but research could lead to first successful vaccine for superbug MRSA and other staph bacteria

For years, medical investigators have tried and failed to develop vaccines for a type of staph bacteria associated with the deadly superbug MRSA. But a new study by Cedars-Sinai investigators shows how staph cells evade the body's immune system, offering a clearer picture of how a successful vaccine would work.


Four spherical MRSA bacteria being enveloped and destroyed by human white blood cells.

Credit: National Institute of Allergy and Infectious Diseases (NIAID)

Staph frequently causes skin infections but occasionally can lead to deadly conditions such as sepsis, pneumonia and bloodstream infections, particularly in hospitalized patients whose immune systems could be weakened by illness.

One strain of the bacterium, the superbug methicillin-resistant Staphylococcus aureus (MRSA), is considered one of the top drug-resistant threats in the U.S., causing more than 11,000 deaths per year, according to the Centers for Disease Control and Prevention. In fact, the superbug kills more Americans than HIV.

"Widespread MRSA infections have prompted routine use of once last-line antibiotics, and this is making the antibiotic resistance problem worse," said George Liu, MD, PhD, co-lead author of the study and a pediatric infectious diseases physician at Cedars-Sinai's Maxine Dunitz Children's Health Center and the F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute. "Our study focuses on why MRSA is so common and why we never develop immunity to these bacteria."

The study, published in the peer-reviewed journal Cell Host & Microbe, also sheds light on how investigators could develop an effective vaccine against staph.

When exposed to a pathogen like a staph bacterium, the body usually fights it and then forms a memory of how its immune system responded. The next time the body encounters the same pathogen, it can use that memory to fight off the microbe much more easily.

But the body can suffer from repeated staph infections throughout life without developing a robust protective memory immune response. The study shows that staph bacteria are able to dodge this immune response.

When the staph cell wall primarily is kept intact after infecting a host, bacterial molecules don't escape the staph cell and the body isn't prompted to produce robust protective immune memory.

"Essentially, staph tricks the body's T cells, which are white blood cells that fight infection, and prevents them from mounting an effective defense," said co-lead author Gislaine Martins, PhD, an assistant professor at the F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute and departments of Biomedical Science and Medicine.

As a result, the body does not develop long-term immunity and remains vulnerable to that particular staph infection throughout life. While certain staph bacteria cause mild skin infections, other strains of staph bacteria can wreak havoc in the bloodstream and bones, sometimes leading to amputations.

"The study explains why our immune system is fooled by staph," Martins said. "Staph evolved to have this enzyme that makes this modification in its cell wall. This modification protects the wall from degradation and therefore from being properly detected by the immune system, which won't remember the bacteria the next time the body is infected."

When study authors removed the cell wall modification, the staph cells spilled their molecules more easily. The modified bacteria sparked a robust memory immune response that protected against reinfection.

The study provides clues about what type of element could be added to staph vaccines to make them more effective. Whereas most staph vaccines have tried to stimulate antibodies -- specialized molecules that recognize foreign bodies and help to mobilize the immune system -- this study suggests that a successful vaccine should harness the body's T cells.

###

Funding for this work was provided by NIH research grants R01AI103542,?R21AI083948 and R01AI127406 and by the F. Widjaja Foundation IBIRI Institute, Cedars-Sinai Medical Center.

About Cedars-Sinai

Cedars-Sinai is a leader in providing high-quality healthcare encompassing primary care, specialized medicine and research. Since 1902, Cedars-Sinai has evolved to meet the needs of one of the most diverse regions in the nation, setting standards in quality and innovative patient care, research, teaching and community service. Today, Cedars-Sinai is known for its national leadership in transforming healthcare for the benefit of patients. Cedars-Sinai impacts the future of healthcare by developing new approaches to treatment and educating tomorrow's health professionals. Additionally, Cedars-Sinai demonstrates a commitment to the community through programs that improve the health of its most vulnerable residents.

DOI: 10.1016/j.chom.2017.08.008

Media Contact

Marni Usheroff
Marni.Usheroff@cshs.org
323-866-6221

 @cedarssinai

http://www.csmc.edu 

Marni Usheroff | EurekAlert!

Further reports about: MRSA T cells bloodstream immune immune response immune system skin successful vaccine superbug

More articles from Health and Medicine:

nachricht Lung images of twins with asthma add to understanding of the disease
06.12.2019 | University of Western Ontario

nachricht Between Arousal and Inhibition
06.12.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>