Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insulin sensitivity may explain link between obesity, memory problems

20.10.2010
Because of impairments in their insulin sensitivity, obese individuals demonstrate different brain responses than their normal-weight peers while completing a challenging cognitive task, according to new research by psychologists at The University of Texas at Austin.

The results provide further evidence that a healthy lifestyle at midlife could lead to a higher quality of life later on, especially as new drugs and treatments allow people to live longer.

"The good thing about insulin sensitivity is that it's very modifiable through diet and exercise," says psychology graduate student Mitzi Gonzales, who co-authored the paper published in the journal Obesity with Assistant Professor Andreana Haley and other colleagues.

To better understand why midlife obesity is linked to higher risk of cognitive decline and dementia in old age, the researchers had middle-aged adults between 40 and 60 years of age complete a challenging cognitive task while undergoing functional magnetic resonance imaging (fMRI).

While obese, overweight and normal-weight participants performed equally well on the task, obese individuals displayed lower functional brain response in one brain region, the inferior parietal lobe.

Obese participants also had lower insulin sensitivity than their normal weight and overweight peers, meaning that their bodies break down glucose less efficiently. Poor insulin sensitivity may ultimately lead to diabetes mellitus if the pancreas is unable to secrete enough insulin to compensate for reduced glucose use.

The study shows that impaired insulin sensitivity, which generally accompanies obesity, may serve as a mediator between midlife obesity and cognitive decline later on. Researchers chose to examine insulin sensitivity because insulin helps regulate people's metabolism and also affects cognitive functions.

The study exemplifies the aim of Haley's lab, which is to use neuroimaging in middle-aged individuals to provide early identification of risk for cognitive decline later in life.

"Generally, very few people study the middle-aged segment of the population, but that's when many chronic diseases are first identified and neurodegenerative processes are triggered," says Haley. "We found that while behavioral performance of obese middle-aged individuals may be the same — they can complete the same cognitive tasks as normal weight individuals — their brain is already doing something different to produce that outcome."

Haley and Gonzales are planning a follow up study to determine if a 12-week exercise intervention can reverse the observed differences in brain response.

For more information, contact: Gary Susswein, College of Liberal Arts, 512 471 4945; Andreana Haley, Clinical Neuroscience Lab, 512-232-0863; Mitzi Gonzales, Clinical Neuroscience Lab, 512-232-0863.

Gary Susswein | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>