Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highly prevalent gene variants in minority populations cause kidney disease

02.03.2017

Preclinical study is first proof-of-concept to pave way for development of new therapeutics

African Americans have a heightened risk of developing chronic and end-stage kidney disease. This association has been attributed to two common genetic variants - named G1 and G2 -- in APOL1, a gene that codes for a human-specific protein. However, direct evidence showing that these variants definitively cause kidney disease was lacking because APOL1 is widely expressed in different cell types but the gene is present in only some primates and humans. The challenge has been to create an animal model to prove this. Now, a team led by researchers from the Perelman School of Medicine at the University of Pennsylvania has engineered mice with these mutations that cause human-like kidney disease.


Representative images of kidney tissue from APOL1-G1 and APOL1-G2 mice, showing severe scarring of the kidney filter.

Credit: Katalin Susztak, Perelman School of Medicine, University of Pennsylvania

"The key missing piece has been whether these variants are true disease culprits," said senior author Katalin Susztak, MD, PhD, an associate professor of Medicine and Genetics, of the study published online in Nature Medicine. "Our study established that these mutations are definitely disease causing."

The G1 and G2 APOL1 gene variants, found almost exclusively in people of West African descent, have been shown to be associated with two-to-100-fold increased risk of kidney disease development, according to previous studies. Despite this highly significant risk, more than one third of African Americans carry the G1 and G2 variants. Biologists surmise that the reason these two mutations are so prevalent is that they emerged as a result of "positive selection" in people of African descent because the mutant proteins protect humans against the parasite that causes African sleeping sickness. Cells that express the G1 and G2 variants of the APOL1 protein are better able to kill these parasites.

To prove that expression of APOL1 with the G1 and G2 mutations causes kidney disease, the team made mice in which they could induce the expression of the non-mutated APOL1 gene as well as the G1 or G2 mutated APOL1 genes in different cell types. The team found that when the G1 and G2 variants are expressed in the filtering cells of the kidney the disease in the mouse model strongly resembled features of human kidney disease at the functional, structural, and molecular level. "These mutant proteins caused the kidney filter to become leaky and scarred, resulting in defective kidney function" Susztak said.

Kidney disease development was specific to the filtering cells of the kidney. The scientists found that G1 or G2 mutated APOL1 proteins interfere with the normal house-cleaning function of the cell, leading to an accumulation of jumbled proteins, inflammation, and eventually cell death. This trash removal system is especially important in kidney filtering cells, as these cells do not renew and losing them results in scarring of kidney tissue.

"Now that we know that the G1 and G2 mutated APOL1 proteins cause human-like kidney disease, we can start to look for ways to target them to reduce kidney disease risk among millions of people of African descent," Susztak said. "The good news is that in mice the disease development was experimentally reversible when the G1 and G2 genes were turned off, and in a related finding, disease severity also correlated with the amount of expression of G1 and G2 APOL1 variant proteins in patient samples."

###

Coauthors are Pazit Beckerman, Jing Bi-Karchin, Ae Seo Deok Park, Chengxiang Qiu, Patrick D. Dummer, Irfana Soomro, Carine M. Boustany-Kari, Steven S. Pullen, Jeffrey H. Miner, Chien-An A. Hu, Tibor Rohacs, Kazunori Inoue, Shuta Ishibe, Moin A. Saleem, Matthew B. Palmer, Ana Maria Cuervo, and Jeffrey B. Kopp.

This work was supported by the National Institutes of Health (DK105821, T32-DK007006).

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $5.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 18 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $373 million awarded in the 2015 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center -- which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report -- Chester County Hospital; Lancaster General Health; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities.

In fiscal year 2015, Penn Medicine provided $253.3 million to benefit our community.

Karen Kreeger | EurekAlert!

Further reports about: cell types gene variants kidney disease mutations

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>