Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Game changer for arthritis and anti-fibrosis drugs

12.11.2012
Discovery shows medications can treat inflammation without increasing risk for infection

In a discovery that can fundamentally change how drugs for arthritis, and potentially many other diseases, are made, University of Utah medical researchers have identified a way to treat inflammation while potentially minimizing a serious side effect of current medications: the increased risk for infection.

These findings provide a new roadmap for making powerful anti-inflammatory medicines that will be safer not only for arthritis patients but also for millions of others with inflammation-associated diseases, such as diabetes, traumatic brain injury, and inflammatory bowel disease, according to cardiologist Dean Y. Li, M.D., Ph.D., the U School of Medicine vice dean for research and HA and Edna Benning endowed professor of medicine who led the study. "This can change the way medication is made," he says. "If we can find a way to replace our most powerful drugs for arthritis, we might be able to develop another way to treat inflammation in other diseases that we've been unable to touch because of the danger of suppressing people's immune systems."

The research, funded by the National Institutes of Health (NIH) and published Sunday, Nov. 11, 2012, Nature online, provides the University the opportunity to explore commercializing the technology either through collaboration outside of the state with pharmaceutical companies or within the state via initiatives such as USTAR. The Utah Legislature established USTAR (Utah Science Technology and Research) initiative in 2006 to promote economic growth and high paying jobs through research at the U of U and Utah State University.

"This is just one example of many scientific opportunities for the University and USTAR to work together to benefit not only millions of patients but build medical innovations in Utah," says Li, who's also director of the U of U Molecular Medicine program.

Two Cellular Pathways

When the body undergoes trauma or gets an infection, it responds by releasing cytokines—proteins that enter cells and unleash a three-pronged attack to kill invading bugs, hype up the immune system, and cause inflammation. While inflammation fights infection, it also produces an undesired side effect by weakening blood vessels, which can lead to swelling in the joints, brain or other areas. Scientists long have believed that cytokines use one cellular pathway in their response to infection, meaning that drugs made to block cytokines from causing inflammation also block the immune system and the ability to kill invading bugs.

In a study with mice, Li and his research colleagues upended the one-pathway belief by showing that cytokines use not one but two cellular pathways to battle infection: one to turn on the immune system and kill intruders and a separate one that destroys the architecture of tissues and organs. Identifying the separate pathway for inflammation has vast potential for developing drugs. "We can selectively block inflammation without making the patient immunosuppressed," Li says. "This rewrites the strategy for today's medicines. We focused the work on arthritis given this is a proven market for drugs that reduce damage from inflammation and fibrosis, but we suspect that many other diseases ranging from fibrosis following heart attacks to inflammatory bowel disease may benefit from such an approach."

Li's discovery has dramatic implications for the field of rheumatology, according to Tracy M. Frech, M.D., U of U assistant professor of internal medicine who specializes in rheumatology. "This may lead to more effective treatments for conditions such as lupus, systemic sclerosis, and the spectrum of inflammatory arthritis, without putting patients at risk for infections," she says. "This phenomenal work is a credit to the strong molecular medicine program here at the University of Utah."

Before a new generation of anti-inflammation drugs can be made, researchers must screen for molecules of chemical compounds that can be turned in pharmaceutical-grade drugs, something the University can and should do, according to Li. This can be accomplished either through collaboration with pharmaceutical companies outside of the state or with sources inside Utah, such as the USTAR initiative.

This study was funded by NIH grants:

#R01HL068873
#R01HL077671
#U54AI065357

Phil Sahm | EurekAlert!
Further information:
http://www.hsc.utah.edu

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

NASA keeps watch over space explosions

16.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>